Schmiegelow C T, Kaufmann H, Ruster T, Schulz J, Kaushal V, Hettrich M, Schmidt-Kaler F, Poschinger U G
Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany.
Phys Rev Lett. 2016 Jan 22;116(3):033002. doi: 10.1103/PhysRevLett.116.033002. Epub 2016 Jan 21.
We demonstrate control of the absolute phase of an optical lattice with respect to a single trapped ion. The lattice is generated by off-resonant free-space laser beams, and we actively stabilize its phase by measuring its ac-Stark shift on a trapped ion. The ion is localized within the standing wave to better than 2% of its period. The locked lattice allows us to apply displacement operations via resonant optical forces with a controlled direction in phase space. Moreover, we observe the lattice-induced phase evolution of spin superposition states in order to analyze the relevant decoherence mechanisms. Finally, we employ lattice-induced phase shifts for inferring the variation of the ion position over the 157 μm range along the trap axis at accuracies of better than 6 nm.
我们展示了相对于单个捕获离子对光学晶格绝对相位的控制。该晶格由非共振自由空间激光束产生,并且我们通过测量其在捕获离子上的交流斯塔克位移来主动稳定其相位。离子在驻波内的定位精度优于其周期的2%。锁定的晶格使我们能够通过相空间中具有可控方向的共振光学力来应用位移操作。此外,我们观察自旋叠加态的晶格诱导相位演化,以分析相关的退相干机制。最后,我们利用晶格诱导的相移来推断离子沿阱轴在157μm范围内位置的变化,精度优于6nm。