Suppr超能文献

动态灌注CT对心肌血流的低估:通过双室模型分析和动态CT有限时间采样进行解释

Underestimation of myocardial blood flow by dynamic perfusion CT: Explanations by two-compartment model analysis and limited temporal sampling of dynamic CT.

作者信息

Ishida Masaki, Kitagawa Kakuya, Ichihara Takashi, Natsume Takahiro, Nakayama Ryohei, Nagasawa Naoki, Kubooka Makiko, Ito Tatsuro, Uno Mio, Goto Yoshitaka, Nagata Motonori, Sakuma Hajime

机构信息

Department of Radiology, Mie University Hospital, Tsu, Mie, Japan.

Faculty of Radiological Technology, Fujita Health University School of Health Science, Toyoake, Aichi, Japan.

出版信息

J Cardiovasc Comput Tomogr. 2016 May-Jun;10(3):207-14. doi: 10.1016/j.jcct.2016.01.008. Epub 2016 Jan 13.

Abstract

PURPOSE

Previous studies using dynamic perfusion CT and volume perfusion CT (VPCT) software consistently underestimated the stress myocardial blood flow (MBF) in normal myocardium to be 1.1-1.4 ml/min/g, whilst the O 15-water PET studies demonstrated the normal stress MBF of 3-5 ml/min/g. We hypothesized that the MBF determined by VPCT (MBF-VPCT) is actually presenting the blood-to-myocardium transfer constant, K1. In this study, we determined K1 using Patlak plot (K1-Patlak) and compared the results with MBF-VPCT.

MATERIAL AND METHODS

17 patients (66 ± 9 years, 7 males) with suspected coronary artery disease (CAD) underwent stress dynamic perfusion CT, followed by rest coronary CT angiography (CTA). Arterial input and myocardial output curves were analyzed with Patlak plot to quantify myocardial K1. Significant CAD was defined as >50% stenosis on CTA. A simulation study was also performed to investigate the influence of limited temporal sampling in dynamic CT acquisition on K1 using the undersampling data generated from MRI.

RESULTS

There were 3 patients with normal CTA, 7 patients with non-significant CAD, and 7 patients with significant CAD. K1-patlak was 0.98 ± 0.35 (range 0.22-1.67) ml/min/g, whereas MBF-VPCT was 0.83 ± 0.23 (range 0.34-1.40) ml/min/g. There was a linear relationship between them: (MBF-VPCT) = 0.58 x (K1-patlak) + 0.27 (r(2) = 0.65, p < 0.001). The simulation study done on MRI data demonstrated that Patlak plot substantially underestimated true K1 by 41% when true K1 was 2.0 ml/min/g with the temporal sampling of 2RR for arterial input and 4RR for myocardial output functions.

CONCLUSIONS

The results of our study are generating hypothesis that MBF-VPCT is likely to be calculating K1-patlak equivalent, not MBF. In addition, these values may be substantially underestimated because of limited temporal sampling rate.

摘要

目的

以往使用动态灌注CT和容积灌注CT(VPCT)软件的研究一直将正常心肌的应激心肌血流量(MBF)低估为1.1 - 1.4毫升/分钟/克,而15O - 水PET研究显示正常应激MBF为3 - 5毫升/分钟/克。我们推测通过VPCT测定的MBF(MBF - VPCT)实际上呈现的是血液到心肌的转运常数K1。在本研究中,我们使用Patlak图(K1 - Patlak)测定K1,并将结果与MBF - VPCT进行比较。

材料与方法

17例疑似冠心病(CAD)患者(66±9岁,7例男性)接受应激动态灌注CT检查,随后进行静息冠状动脉CT血管造影(CTA)。用Patlak图分析动脉输入和心肌输出曲线以量化心肌K1。显著CAD定义为CTA上狭窄>50%。还进行了一项模拟研究,使用从MRI生成的欠采样数据来研究动态CT采集中有限时间采样对K1的影响。

结果

CTA正常的患者有3例,非显著CAD患者有7例,显著CAD患者有7例。K1 - Patlak为0.98±0.35(范围0.22 - 1.67)毫升/分钟/克,而MBF - VPCT为0.83±0.23(范围0.34 - 1.40)毫升/分钟/克。它们之间存在线性关系:(MBF - VPCT)= 0.58×(K1 - Patlak)+ 0.27(r² = 0.65, p < 0.001)。对MRI数据进行的模拟研究表明,当真实K1为2.0毫升/分钟/克且动脉输入的时间采样为2RR、心肌输出功能的时间采样为4RR时,Patlak图将真实K1大幅低估了41%。

结论

我们的研究结果提出了一个假设,即MBF - VPCT可能计算的是等同于K1 - Patlak的值,而非MBF。此外,由于时间采样率有限,这些值可能被大幅低估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验