Suppr超能文献

利用电子束辐照和可扩展氧化物电介质在二维材料中实现可控载流子掺杂

Controllable Carrier Doping in Two-Dimensional Materials Using Electron-Beam Irradiation and Scalable Oxide Dielectrics.

作者信息

Wang Lu, Guo Zejing, Lan Qing, Song Wenqing, Zhong Zhipeng, Yang Kunlin, Zhao Tuoyu, Huang Hai, Zhang Cheng, Shi Wu

机构信息

State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China.

Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China.

出版信息

Micromachines (Basel). 2023 Nov 19;14(11):2125. doi: 10.3390/mi14112125.

Abstract

Two-dimensional (2D) materials, characterized by their atomically thin nature and exceptional properties, hold significant promise for future nano-electronic applications. The precise control of carrier density in these 2D materials is essential for enhancing performance and enabling complex device functionalities. In this study, we present an electron-beam (e-beam) doping approach to achieve controllable carrier doping effects in graphene and MoS field-effect transistors (FETs) by leveraging charge-trapping oxide dielectrics. By adding an atomic layer deposition (ALD)-grown AlO dielectric layer on top of the SiO/Si substrate, we demonstrate that controllable and reversible carrier doping effects can be effectively induced in graphene and MoS FETs through e-beam doping. This new device configuration establishes an oxide interface that enhances charge-trapping capabilities, enabling the effective induction of electron and hole doping beyond the SiO breakdown limit using high-energy e-beam irradiation. Importantly, these high doping effects exhibit non-volatility and robust stability in both vacuum and air environments for graphene FET devices. This methodology enhances carrier modulation capabilities in 2D materials and holds great potential for advancing the development of scalable 2D nano-devices.

摘要

二维(2D)材料以其原子级的超薄特性和卓越性能为未来的纳米电子应用带来了巨大希望。精确控制这些二维材料中的载流子密度对于提高性能和实现复杂的器件功能至关重要。在本研究中,我们提出了一种电子束(e-beam)掺杂方法,通过利用电荷俘获氧化物电介质,在石墨烯和二硫化钼场效应晶体管(FET)中实现可控的载流子掺杂效应。通过在SiO/Si衬底上添加原子层沉积(ALD)生长的AlO电介质层,我们证明了通过电子束掺杂可以在石墨烯和二硫化钼FET中有效地诱导出可控且可逆的载流子掺杂效应。这种新的器件结构建立了一个增强电荷俘获能力的氧化物界面,使得利用高能电子束辐照能够在超过SiO击穿极限的情况下有效地诱导电子和空穴掺杂。重要的是,对于石墨烯FET器件,这些高掺杂效应在真空和空气环境中均表现出非挥发性和强大的稳定性。这种方法增强了二维材料中的载流子调制能力,对于推进可扩展二维纳米器件的发展具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1cb/10673063/44739813a942/micromachines-14-02125-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验