用于二硫化钼双极导电性的空间缺陷纳米工程
Spatial defects nanoengineering for bipolar conductivity in MoS.
作者信息
Zheng Xiaorui, Calò Annalisa, Cao Tengfei, Liu Xiangyu, Huang Zhujun, Das Paul Masih, Drndic Marija, Albisetti Edoardo, Lavini Francesco, Li Tai-De, Narang Vishal, King William P, Harrold John W, Vittadello Michele, Aruta Carmela, Shahrjerdi Davood, Riedo Elisa
机构信息
Tandon School of Engineering, New York University, 6 MetroTech Center, New York, NY, 11201, USA.
CUNY Graduate Center Advanced Science Research Center, 85 St Nicholas Terrace, New York, NY, 10031, USA.
出版信息
Nat Commun. 2020 Jul 10;11(1):3463. doi: 10.1038/s41467-020-17241-1.
Understanding the atomistic origin of defects in two-dimensional transition metal dichalcogenides, their impact on the electronic properties, and how to control them is critical for future electronics and optoelectronics. Here, we demonstrate the integration of thermochemical scanning probe lithography (tc-SPL) with a flow-through reactive gas cell to achieve nanoscale control of defects in monolayer MoS. The tc-SPL produced defects can present either p- or n-type doping on demand, depending on the used gasses, allowing the realization of field effect transistors, and p-n junctions with precise sub-μm spatial control, and a rectification ratio of over 10. Doping and defects formation are elucidated by means of X-Ray photoelectron spectroscopy, scanning transmission electron microscopy, and density functional theory. We find that p-type doping in HCl/HO atmosphere is related to the rearrangement of sulfur atoms, and the formation of protruding covalent S-S bonds on the surface. Alternatively, local heating MoS in N produces n-character.
理解二维过渡金属二硫属化物中缺陷的原子起源、它们对电子性质的影响以及如何控制这些缺陷对于未来的电子学和光电子学至关重要。在此,我们展示了热化学扫描探针光刻技术(tc-SPL)与流通式反应气体池的集成,以实现对单层MoS中缺陷的纳米级控制。tc-SPL产生的缺陷可根据所使用的气体按需呈现p型或n型掺杂,从而能够实现具有精确亚微米空间控制且整流比超过10的场效应晶体管和p-n结。通过X射线光电子能谱、扫描透射电子显微镜和密度泛函理论对掺杂和缺陷形成进行了阐释。我们发现,在HCl/H₂O气氛中的p型掺杂与硫原子的重排以及表面突出的共价S-S键的形成有关。另外,在N₂中对MoS进行局部加热会产生n型特性。