Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
Neuron. 2016 Feb 17;89(4):829-41. doi: 10.1016/j.neuron.2016.01.006. Epub 2016 Feb 4.
Estimating motion is a fundamental task for the visual system of sighted animals. In Drosophila, direction-selective T4 and T5 cells respond to moving brightness increments (ON) and decrements (OFF), respectively. Current algorithmic models of the circuit are based on the interaction of two differentially filtered signals. However, electron microscopy studies have shown that T5 cells receive their major input from four classes of neurons: Tm1, Tm2, Tm4, and Tm9. Using two-photon calcium imaging, we demonstrate that T5 is the first direction-selective stage within the OFF pathway. The four cells provide an array of spatiotemporal filters to T5. Silencing their synaptic output in various combinations, we find that all input elements are involved in OFF motion detection to varying degrees. Our comprehensive survey challenges the simplified view of how neural systems compute the direction of motion and suggests that an intricate interplay of many signals results in direction selectivity.
估计运动是有视力的动物视觉系统的基本任务。在果蝇中,方向选择性 T4 和 T5 细胞分别对移动的亮度增加(ON)和减少(OFF)作出反应。目前,关于该电路的算法模型是基于两个差异过滤信号的相互作用。然而,电子显微镜研究表明,T5 细胞主要从四类神经元接收输入:Tm1、Tm2、Tm4 和 Tm9。通过双光子钙成像,我们证明 T5 是 OFF 通路中第一个具有方向选择性的阶段。这四个细胞为 T5 提供了一系列时空滤波器。在各种组合中沉默它们的突触输出,我们发现所有输入元素都在不同程度上参与了 OFF 运动检测。我们的全面调查挑战了关于神经系统如何计算运动方向的简化观点,并表明许多信号的复杂相互作用导致了方向选择性。