Suppr超能文献

对视觉稀疏性的适应增强了对孤立刺激的反应。

Adaptation to visual sparsity enhances responses to isolated stimuli.

作者信息

Gou Tong, Matulis Catherine A, Clark Damon A

机构信息

Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA.

Department of Physics, Yale University, New Haven, CT 06511, USA.

出版信息

Curr Biol. 2024 Dec 16;34(24):5697-5713.e8. doi: 10.1016/j.cub.2024.10.053. Epub 2024 Nov 21.

Abstract

Sensory systems adapt their response properties to the statistics of their inputs. For instance, visual systems adapt to low-order statistics like mean and variance to encode stimuli efficiently or to facilitate specific downstream computations. However, it remains unclear how other statistical features affect sensory adaptation. Here, we explore how Drosophila's visual motion circuits adapt to stimulus sparsity, a measure of the signal's intermittency not captured by low-order statistics alone. Early visual neurons in both ON and OFF pathways alter their responses dramatically with stimulus sparsity, responding positively to both light and dark sparse stimuli but linearly to dense stimuli. These changes extend to downstream ON and OFF direction-selective neurons, which are activated by sparse stimuli of both polarities but respond with opposite signs to light and dark regions of dense stimuli. Thus, sparse stimuli activate both ON and OFF pathways, recruiting a larger fraction of the circuit and potentially enhancing the salience of isolated stimuli. Overall, our results reveal visual response properties that increase the fraction of the circuit responding to sparse, isolated stimuli.

摘要

感觉系统会根据其输入的统计特性来调整自身的反应特性。例如,视觉系统会适应诸如均值和方差等低阶统计特性,以便有效地编码刺激或促进特定的下游计算。然而,其他统计特征如何影响感觉适应仍不清楚。在这里,我们探究果蝇的视觉运动回路如何适应刺激稀疏性,这是一种仅靠低阶统计无法捕捉的信号间歇性度量。ON和OFF通路中的早期视觉神经元都会随着刺激稀疏性而显著改变其反应,对明暗稀疏刺激均产生正向反应,但对密集刺激呈线性反应。这些变化延伸到下游的ON和OFF方向选择性神经元,它们会被两种极性的稀疏刺激激活,但对密集刺激的亮区和暗区有相反的反应符号。因此,稀疏刺激会激活ON和OFF通路,使更大比例的回路被调动起来,并可能增强孤立刺激的显著性。总体而言,我们的结果揭示了视觉反应特性,这些特性增加了回路中对稀疏、孤立刺激作出反应的比例。

相似文献

1
Adaptation to visual sparsity enhances responses to isolated stimuli.
Curr Biol. 2024 Dec 16;34(24):5697-5713.e8. doi: 10.1016/j.cub.2024.10.053. Epub 2024 Nov 21.
2
Heterogeneous Temporal Contrast Adaptation in Drosophila Direction-Selective Circuits.
Curr Biol. 2020 Jan 20;30(2):222-236.e6. doi: 10.1016/j.cub.2019.11.077. Epub 2020 Jan 9.
3
Flexible filtering by neural inputs supports motion computation across states and stimuli.
Curr Biol. 2021 Dec 6;31(23):5249-5260.e5. doi: 10.1016/j.cub.2021.09.061. Epub 2021 Oct 19.
4
Adaptation disrupts motion integration in the primate dorsal stream.
Neuron. 2014 Feb 5;81(3):674-86. doi: 10.1016/j.neuron.2013.11.022.
5
GABAergic lateral interactions tune the early stages of visual processing in Drosophila.
Neuron. 2013 Jun 19;78(6):1075-89. doi: 10.1016/j.neuron.2013.04.024.
6
Correlation between OFF and ON channels underlies dark target selectivity in an insect visual system.
J Neurosci. 2013 Aug 7;33(32):13225-32. doi: 10.1523/JNEUROSCI.1277-13.2013.
7
Nonlinear circuits for naturalistic visual motion estimation.
Elife. 2015 Oct 24;4:e09123. doi: 10.7554/eLife.09123.
8
The Neuronal Basis of an Illusory Motion Percept Is Explained by Decorrelation of Parallel Motion Pathways.
Curr Biol. 2018 Dec 3;28(23):3748-3762.e8. doi: 10.1016/j.cub.2018.10.007. Epub 2018 Nov 21.
9
Direction Selectivity in Drosophila Emerges from Preferred-Direction Enhancement and Null-Direction Suppression.
J Neurosci. 2016 Aug 3;36(31):8078-92. doi: 10.1523/JNEUROSCI.1272-16.2016.
10
A minimal synaptic model for direction selective neurons in Drosophila.
J Vis. 2020 Feb 10;20(2):2. doi: 10.1167/jov.20.2.2.

本文引用的文献

1
Temporal novelty detection and multiple timescale integration drive Drosophila orientation dynamics in temporally diverse olfactory environments.
PLoS Comput Biol. 2023 May 11;19(5):e1010606. doi: 10.1371/journal.pcbi.1010606. eCollection 2023 May.
2
Panoramic visual statistics shape retina-wide organization of receptive fields.
Nat Neurosci. 2023 Apr;26(4):606-614. doi: 10.1038/s41593-023-01280-0. Epub 2023 Mar 23.
3
Excitatory and inhibitory neural dynamics jointly tune motion detection.
Curr Biol. 2022 Sep 12;32(17):3659-3675.e8. doi: 10.1016/j.cub.2022.06.075. Epub 2022 Jul 21.
4
Retinal Encoding of Natural Scenes.
Annu Rev Vis Sci. 2022 Sep 15;8:171-193. doi: 10.1146/annurev-vision-100820-114239. Epub 2022 Jun 8.
5
Neural mechanisms to exploit positional geometry for collision avoidance.
Curr Biol. 2022 Jun 6;32(11):2357-2374.e6. doi: 10.1016/j.cub.2022.04.023. Epub 2022 May 3.
7
Flexible filtering by neural inputs supports motion computation across states and stimuli.
Curr Biol. 2021 Dec 6;31(23):5249-5260.e5. doi: 10.1016/j.cub.2021.09.061. Epub 2021 Oct 19.
8
An optimized acetylcholine sensor for monitoring in vivo cholinergic activity.
Nat Methods. 2020 Nov;17(11):1139-1146. doi: 10.1038/s41592-020-0953-2. Epub 2020 Sep 28.
9
SPARC enables genetic manipulation of precise proportions of cells.
Nat Neurosci. 2020 Sep;23(9):1168-1175. doi: 10.1038/s41593-020-0668-9. Epub 2020 Jul 20.
10
Object-Displacement-Sensitive Visual Neurons Drive Freezing in Drosophila.
Curr Biol. 2020 Jul 6;30(13):2532-2550.e8. doi: 10.1016/j.cub.2020.04.068. Epub 2020 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验