Suppr超能文献

肿瘤微脉管系统中的细胞与纳米颗粒运输:纳米颗粒的尺寸、形状及表面功能的作用

Cell and nanoparticle transport in tumour microvasculature: the role of size, shape and surface functionality of nanoparticles.

作者信息

Li Ying, Lian Yanping, Zhang Lucy T, Aldousari Saad M, Hedia Hassan S, Asiri Saeed A, Liu Wing Kam

机构信息

Department of Mechanical Engineering and Institute of Materials Science , University of Connecticut , Storrs, CT 06269 , USA.

Department of Mechanical Engineering , Northwestern University , Evanston, IL 60201 , USA.

出版信息

Interface Focus. 2016 Feb 6;6(1):20150086. doi: 10.1098/rsfs.2015.0086.

Abstract

Through nanomedicine, game-changing methods are emerging to deliver drug molecules directly to diseased areas. One of the most promising of these is the targeted delivery of drugs and imaging agents via drug carrier-based platforms. Such drug delivery systems can now be synthesized from a wide range of different materials, made in a number of different shapes, and coated with an array of different organic molecules, including ligands. If optimized, these systems can enhance the efficacy and specificity of delivery compared with those of non-targeted systems. Emerging integrated multiscale experiments, models and simulations have opened the door for endless medical applications. Current bottlenecks in design of the drug-carrying particles are the lack of knowledge about the dispersion of these particles in the microvasculature and of their subsequent internalization by diseased cells (Bao et al. 2014 J. R. Soc. Interface 11, 20140301 (doi:10.1098/rsif.2014.0301)). We describe multiscale modelling techniques that study how drug carriers disperse within the microvasculature. The immersed molecular finite-element method is adopted to simulate whole blood including blood plasma, red blood cells and nanoparticles. With a novel dissipative particle dynamics method, the beginning stages of receptor-driven endocytosis of nanoparticles can be understood in detail. Using this multiscale modelling method, we elucidate how the size, shape and surface functionality of nanoparticles will affect their dispersion in the microvasculature and subsequent internalization by targeted cells.

摘要

通过纳米医学,正在出现改变游戏规则的方法,可将药物分子直接输送到患病区域。其中最有前景的方法之一是通过基于药物载体的平台进行药物和成像剂的靶向递送。现在,这种药物递送系统可以由多种不同材料合成,制成多种不同形状,并涂覆一系列不同的有机分子,包括配体。如果进行优化,与非靶向系统相比,这些系统可以提高递送的功效和特异性。新兴的综合多尺度实验、模型和模拟为无尽的医学应用打开了大门。目前载药颗粒设计中的瓶颈在于缺乏关于这些颗粒在微血管中的分散情况以及它们随后被患病细胞内化的知识(Bao等人,《皇家学会界面杂志》,2014年,第11卷,20140301(doi:10.1098/rsif.2014.0301))。我们描述了研究药物载体如何在微血管内分散的多尺度建模技术。采用浸入式分子有限元方法来模拟包括血浆、红细胞和纳米颗粒在内的全血。利用一种新颖的耗散粒子动力学方法,可以详细了解纳米颗粒受体驱动的内吞作用的起始阶段。使用这种多尺度建模方法,我们阐明了纳米颗粒的大小、形状和表面功能将如何影响它们在微血管中的分散以及随后被靶向细胞内化的过程。

相似文献

2
Modeling particle shape-dependent dynamics in nanomedicine.
J Nanosci Nanotechnol. 2011 Feb;11(2):919-28. doi: 10.1166/jnn.2011.3536.
3
Modeling of spatiotemporal dynamics of ligand-coated particle flow in targeted drug delivery processes.
Proc Natl Acad Sci U S A. 2024 May 28;121(22):e2314533121. doi: 10.1073/pnas.2314533121. Epub 2024 May 22.
5
Nanoparticle hardness controls the internalization pathway for drug delivery.
Nanoscale. 2015 Feb 14;7(6):2758-69. doi: 10.1039/c4nr05575f.
6
The importance of nanoparticle shape in cancer drug delivery.
Expert Opin Drug Deliv. 2015 Jan;12(1):129-42. doi: 10.1517/17425247.2014.950564. Epub 2014 Aug 20.
7
Engineered Hybrid Nanoparticles for On-Demand Diagnostics and Therapeutics.
Acc Chem Res. 2015 Dec 15;48(12):3016-25. doi: 10.1021/acs.accounts.5b00316. Epub 2015 Nov 25.
8
Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation.
Soft Matter. 2011 Dec 22;8:1934-1946. doi: 10.1039/C2SM06391C.
10
Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications.
Expert Opin Drug Deliv. 2015 Mar;12(3):481-92. doi: 10.1517/17425247.2015.963055. Epub 2014 Oct 18.

引用本文的文献

1
Advances and prospects of RNA delivery nanoplatforms for cancer therapy.
Acta Pharm Sin B. 2025 Jan;15(1):52-96. doi: 10.1016/j.apsb.2024.09.009. Epub 2024 Sep 14.
2
Nanoparticle-Based Drug Delivery for Vascular Applications.
Bioengineering (Basel). 2024 Dec 3;11(12):1222. doi: 10.3390/bioengineering11121222.
4
Nanoparticle-mediated cancer cell therapy: basic science to clinical applications.
Cancer Metastasis Rev. 2023 Sep;42(3):601-627. doi: 10.1007/s10555-023-10086-2. Epub 2023 Feb 24.
5
Carbon dots for cancer nanomedicine: a bright future.
Nanoscale Adv. 2021 Jul 8;3(18):5183-5221. doi: 10.1039/d1na00036e. eCollection 2021 Sep 14.
6
An iRGD peptide conjugated heparin nanocarrier for gastric cancer therapy.
RSC Adv. 2018 Aug 24;8(52):30012-30020. doi: 10.1039/c8ra05071f. eCollection 2018 Aug 20.
8
Towards principled design of cancer nanomedicine to accelerate clinical translation.
Mater Today Bio. 2022 Feb 1;13:100208. doi: 10.1016/j.mtbio.2022.100208. eCollection 2022 Jan.
9
Magnetic Nanostructures as Emerging Therapeutic Tools to Boost Anti-Tumour Immunity.
Cancers (Basel). 2021 May 31;13(11):2735. doi: 10.3390/cancers13112735.
10

本文引用的文献

1
Nanoparticle-blood interactions: the implications on solid tumour targeting.
Chem Commun (Camb). 2015 Feb 18;51(14):2756-67. doi: 10.1039/c4cc07644c.
3
Physical Principles of Nanoparticle Cellular Endocytosis.
ACS Nano. 2015 Sep 22;9(9):8655-71. doi: 10.1021/acsnano.5b03184. Epub 2015 Aug 21.
4
Remodeling Tumor Vasculature to Enhance Delivery of Intermediate-Sized Nanoparticles.
ACS Nano. 2015 Sep 22;9(9):8689-96. doi: 10.1021/acsnano.5b02028. Epub 2015 Jul 31.
6
Polymeric nanoparticles for targeted treatment in oncology: current insights.
Int J Nanomedicine. 2015 Feb 2;10:1001-18. doi: 10.2147/IJN.S56932. eCollection 2015.
8
Nanoparticle hardness controls the internalization pathway for drug delivery.
Nanoscale. 2015 Feb 14;7(6):2758-69. doi: 10.1039/c4nr05575f.
9
Tunable rigidity of (polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake.
Adv Mater. 2015 Feb 25;27(8):1402-7. doi: 10.1002/adma.201404788. Epub 2014 Dec 22.
10
Theoretical and computational investigations of nanoparticle-biomembrane interactions in cellular delivery.
Small. 2015 Mar;11(9-10):1055-71. doi: 10.1002/smll.201401943. Epub 2014 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验