Li Ying, Lian Yanping, Zhang Lucy T, Aldousari Saad M, Hedia Hassan S, Asiri Saeed A, Liu Wing Kam
Department of Mechanical Engineering and Institute of Materials Science , University of Connecticut , Storrs, CT 06269 , USA.
Department of Mechanical Engineering , Northwestern University , Evanston, IL 60201 , USA.
Interface Focus. 2016 Feb 6;6(1):20150086. doi: 10.1098/rsfs.2015.0086.
Through nanomedicine, game-changing methods are emerging to deliver drug molecules directly to diseased areas. One of the most promising of these is the targeted delivery of drugs and imaging agents via drug carrier-based platforms. Such drug delivery systems can now be synthesized from a wide range of different materials, made in a number of different shapes, and coated with an array of different organic molecules, including ligands. If optimized, these systems can enhance the efficacy and specificity of delivery compared with those of non-targeted systems. Emerging integrated multiscale experiments, models and simulations have opened the door for endless medical applications. Current bottlenecks in design of the drug-carrying particles are the lack of knowledge about the dispersion of these particles in the microvasculature and of their subsequent internalization by diseased cells (Bao et al. 2014 J. R. Soc. Interface 11, 20140301 (doi:10.1098/rsif.2014.0301)). We describe multiscale modelling techniques that study how drug carriers disperse within the microvasculature. The immersed molecular finite-element method is adopted to simulate whole blood including blood plasma, red blood cells and nanoparticles. With a novel dissipative particle dynamics method, the beginning stages of receptor-driven endocytosis of nanoparticles can be understood in detail. Using this multiscale modelling method, we elucidate how the size, shape and surface functionality of nanoparticles will affect their dispersion in the microvasculature and subsequent internalization by targeted cells.
通过纳米医学,正在出现改变游戏规则的方法,可将药物分子直接输送到患病区域。其中最有前景的方法之一是通过基于药物载体的平台进行药物和成像剂的靶向递送。现在,这种药物递送系统可以由多种不同材料合成,制成多种不同形状,并涂覆一系列不同的有机分子,包括配体。如果进行优化,与非靶向系统相比,这些系统可以提高递送的功效和特异性。新兴的综合多尺度实验、模型和模拟为无尽的医学应用打开了大门。目前载药颗粒设计中的瓶颈在于缺乏关于这些颗粒在微血管中的分散情况以及它们随后被患病细胞内化的知识(Bao等人,《皇家学会界面杂志》,2014年,第11卷,20140301(doi:10.1098/rsif.2014.0301))。我们描述了研究药物载体如何在微血管内分散的多尺度建模技术。采用浸入式分子有限元方法来模拟包括血浆、红细胞和纳米颗粒在内的全血。利用一种新颖的耗散粒子动力学方法,可以详细了解纳米颗粒受体驱动的内吞作用的起始阶段。使用这种多尺度建模方法,我们阐明了纳米颗粒的大小、形状和表面功能将如何影响它们在微血管中的分散以及随后被靶向细胞内化的过程。