Suppr超能文献

步行运动中频率与精度之间的权衡:运动学和脑血氧水平依赖性功能磁共振成像激活模式

Trade-off between frequency and precision during stepping movements: Kinematic and BOLD brain activation patterns.

作者信息

Martínez Martin, Valencia Miguel, Vidorreta Marta, Luis Elkin O, Castellanos Gabriel, Villagra Federico, Fernández-Seara Maria A, Pastor Maria A

机构信息

Division of Neuroscience, Neuroimaging Laboratory, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain.

Division of Neuroscience, Neurophysiology Laboratory, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, 31008, Spain.

出版信息

Hum Brain Mapp. 2016 May;37(5):1722-37. doi: 10.1002/hbm.23131. Epub 2016 Feb 9.

Abstract

The central nervous system has the ability to adapt our locomotor pattern to produce a wide range of gait modalities and velocities. In reacting to external pacing stimuli, deviations from an individual preferred cadence provoke a concurrent decrease in accuracy that suggests the existence of a trade-off between frequency and precision; a compromise that could result from the specialization within the control centers of locomotion to ensure a stable transition and optimal adaptation to changing environment. Here, we explore the neural correlates of such adaptive mechanisms by visually guiding a group of healthy subjects to follow three comfortable stepping frequencies while simultaneously recording their BOLD responses and lower limb kinematics with the use of a custom-built treadmill device. In following the visual stimuli, subjects adopt a common pattern of symmetric and anti-phase movements across pace conditions. However, when increasing the stimulus frequency, an improvement in motor performance (precision and stability) was found, which suggests a change in the control mode from reactive to predictive schemes. Brain activity patterns showed similar BOLD responses across pace conditions though significant differences were observed in parietal and cerebellar regions. Neural correlates of stepping precision were found in the insula, cerebellum, dorsolateral pons and inferior olivary nucleus, whereas neural correlates of stepping stability were found in a distributed network, suggesting a transition in the control strategy across the stimulated range of frequencies: from unstable/reactive at lower paces (i.e., stepping stability managed by subcortical regions) to stable/predictive at higher paces (i.e., stability managed by cortical regions). Hum Brain Mapp 37:1722-1737, 2016. © 2016 Wiley Periodicals, Inc.

摘要

中枢神经系统有能力调整我们的运动模式,以产生广泛的步态形式和速度。在对外在节奏刺激做出反应时,偏离个体偏好的步频会导致准确性同时下降,这表明在频率和精度之间存在一种权衡;这种权衡可能是由于运动控制中心的专业化,以确保稳定过渡并最佳适应不断变化的环境。在此,我们通过视觉引导一组健康受试者遵循三种舒适的步频,同时使用定制的跑步机设备记录他们的血氧水平依赖(BOLD)反应和下肢运动学,来探索这种适应性机制的神经关联。在遵循视觉刺激时,受试者在不同步频条件下采用了对称和反相运动的共同模式。然而,当增加刺激频率时,发现运动表现(精度和稳定性)有所改善,这表明控制模式从反应性方案转变为预测性方案。尽管在顶叶和小脑区域观察到显著差异,但脑活动模式在不同步频条件下显示出相似的BOLD反应。在脑岛、小脑、脑桥背外侧和下橄榄核中发现了步频精度的神经关联,而在一个分布式网络中发现了步频稳定性的神经关联,这表明在受刺激的频率范围内控制策略发生了转变:从较低步频时的不稳定/反应性(即由皮层下区域管理步频稳定性)到较高步频时的稳定/预测性(即由皮层区域管理稳定性)。《人类大脑图谱》37:1722 - 1737,2016年。© 2016威利期刊公司。

相似文献

1
Trade-off between frequency and precision during stepping movements: Kinematic and BOLD brain activation patterns.
Hum Brain Mapp. 2016 May;37(5):1722-37. doi: 10.1002/hbm.23131. Epub 2016 Feb 9.
2
MRI-compatible device for examining brain activation related to stepping.
IEEE Trans Med Imaging. 2014 May;33(5):1044-53. doi: 10.1109/TMI.2014.2301493.
3
Turning a cylindrical treadmill with feet: An MR-compatible device for assessment of the neural correlates of lower-limb movement.
J Neurosci Methods. 2018 Sep 1;307:14-22. doi: 10.1016/j.jneumeth.2018.06.006. Epub 2018 Jun 18.
5
Decoding Internally and Externally Driven Movement Plans.
J Neurosci. 2015 Oct 21;35(42):14160-71. doi: 10.1523/JNEUROSCI.0596-15.2015.
6
Mental steps: Differential activation of internal pacemakers in motor imagery and in mental imitation of gait.
Hum Brain Mapp. 2017 Oct;38(10):5195-5216. doi: 10.1002/hbm.23725. Epub 2017 Jul 21.
7
A functional MRI study of motor dysfunction in Friedreich's ataxia.
Brain Res. 2012 Aug 30;1471:138-54. doi: 10.1016/j.brainres.2012.06.035. Epub 2012 Jul 3.
8
Parametric fMRI of paced motor responses uncovers novel whole-brain imaging biomarkers in spinocerebellar ataxia type 3.
Hum Brain Mapp. 2016 Oct;37(10):3656-68. doi: 10.1002/hbm.23266. Epub 2016 Jun 7.
9
On the Modulation of Brain Activation During Simulated Weight Bearing in Supine Gait-Like Stepping.
Brain Topogr. 2016 Jan;29(1):193-205. doi: 10.1007/s10548-015-0441-7. Epub 2015 Jul 24.
10
Cortical and subcortical areas involved in the regulation of reach movement speed in the human brain: An fMRI study.
Hum Brain Mapp. 2019 Jan;40(1):151-162. doi: 10.1002/hbm.24361. Epub 2018 Sep 25.

引用本文的文献

3
Retention, savings and interlimb transfer of reactive gait adaptations in humans following unexpected perturbations.
Commun Biol. 2018 Dec 14;1:230. doi: 10.1038/s42003-018-0238-9. eCollection 2018.
4
Resting-state functional connectivity of subcortical locomotor centers explains variance in walking capacity.
Hum Brain Mapp. 2018 Dec;39(12):4831-4843. doi: 10.1002/hbm.24326. Epub 2018 Jul 27.
5
Kinematics in the brain: unmasking motor control strategies?
Exp Brain Res. 2017 Sep;235(9):2639-2651. doi: 10.1007/s00221-017-4982-8. Epub 2017 Jun 2.

本文引用的文献

1
Sensorimotor processing for balance in spinocerebellar ataxia type 6.
Mov Disord. 2015 Aug;30(9):1259-66. doi: 10.1002/mds.26227. Epub 2015 Apr 16.
2
The integrative role of the pedunculopontine nucleus in human gait.
Brain. 2015 May;138(Pt 5):1284-96. doi: 10.1093/brain/awv047. Epub 2015 Mar 12.
3
Brain activation associated with active and passive lower limb stepping.
Front Hum Neurosci. 2014 Oct 28;8:828. doi: 10.3389/fnhum.2014.00828. eCollection 2014.
5
MRI-compatible device for examining brain activation related to stepping.
IEEE Trans Med Imaging. 2014 May;33(5):1044-53. doi: 10.1109/TMI.2014.2301493.
6
Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG-BOLD-CBF study in humans.
Neuroimage. 2014 Jul 1;94:263-274. doi: 10.1016/j.neuroimage.2014.02.029. Epub 2014 Mar 12.
7
Patterns of optimization in single- and inter-leg gait dynamics.
Gait Posture. 2014 Feb;39(2):733-8. doi: 10.1016/j.gaitpost.2013.10.013. Epub 2013 Oct 21.
8
Consensus paper: the cerebellum's role in movement and cognition.
Cerebellum. 2014 Feb;13(1):151-77. doi: 10.1007/s12311-013-0511-x.
9
Responses of Anterior Superior Temporal Polysensory (STPa) Neurons to "Biological Motion" Stimuli.
J Cogn Neurosci. 1994 Spring;6(2):99-116. doi: 10.1162/jocn.1994.6.2.99.
10
Effects of walking speed on asymmetry and bilateral coordination of gait.
Gait Posture. 2013 Sep;38(4):864-9. doi: 10.1016/j.gaitpost.2013.04.011. Epub 2013 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验