Van Kooten Elishevah M M E, Wielandt Daniel, Schiller Martin, Nagashima Kazuhide, Thomen Aurélien, Larsen Kirsten K, Olsen Mia B, Nordlund Åke, Krot Alexander N, Bizzarro Martin
Centre for Star and Planet Formation and Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark;
Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2011-6. doi: 10.1073/pnas.1518183113. Epub 2016 Feb 8.
The short-lived (26)Al radionuclide is thought to have been admixed into the initially (26)Al-poor protosolar molecular cloud before or contemporaneously with its collapse. Bulk inner Solar System reservoirs record positively correlated variability in mass-independent (54)Cr and (26)Mg*, the decay product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last addition of stellar-derived (26)Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a (26)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals that accreted beyond the orbits of the gas giants. The lack of evidence for this material in other chondrite groups requires isolation from the outer Solar System, possibly by the opening of disk gaps from the early formation of gas giants.
短寿命的(26)铝放射性核素被认为是在其坍缩之前或同时混入了最初贫(26)铝的原太阳分子云中。太阳系内部的大量储库记录了质量无关的(54)铬和(26)铝的衰变产物(26)镁的正相关变化。这种相关性被解释为反映了太阳系内部富含(26)铝的分子云物质的渐进热加工过程。反映在最后一次添加恒星源(26)铝之前分子云核合成组成的未经热加工的分子云物质尚未被识别出来,但可能保存在太阳系外部吸积的小行星中。我们表明,富金属碳质球粒陨石及其组分具有独特的同位素特征,从太阳系内部组成延伸至(26)镁亏损和(54)铬富集的组分。这种组成与未经恒星源(26)铝污染的未经热加工的原始分子云物质所预期的组成一致。富金属球粒陨石整体的(26)镁*和(54)铬组成要求其前身物质中有大量(25 - 50%)的原始分子云物质。鉴于预计如此高比例的原始分子云物质仅在太阳系外部才能留存,我们推断,与彗星体类似,富金属碳质球粒陨石是在气态巨行星轨道之外吸积的小行星样本。在其他球粒陨石群中缺乏这种物质的证据,这需要将其与太阳系外部分隔开来,可能是通过气态巨行星早期形成时打开盘隙来实现。