Ioannidou Katerina, Krakowiak Konrad J, Bauchy Mathieu, Hoover Christian G, Masoero Enrico, Yip Sidney, Ulm Franz-Josef, Levitz Pierre, Pellenq Roland J-M, Del Gado Emanuela
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; MultiScale Material Science for Energy and Environment, Massachusetts Institute of Technology-CNRS Joint Laboratory at Massachusetts Institute of Technology, Cambridge, MA 02139;
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2029-34. doi: 10.1073/pnas.1520487113. Epub 2016 Feb 8.
Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials.
水泥和混凝土的强度及其他力学性能取决于水泥水化过程中硅酸钙水合物(C-S-H)的形成。由于这种水化产物以及水泥颗粒在水中溶解后驱动其从离子溶液中沉淀的机制较为复杂,控制C-S-H相的结构和性能是一项挑战。与大多聚焦于微米以上长度尺度的传统模型不同,近期研究关注了C-S-H的分子结构。然而,小角中子散射、电子显微镜成像和纳米压痕实验表明,其延伸数百纳米的介观组织可能更为重要。在此,我们揭示了C-S-H的介观织构,这是将基本尺度与工程性能宏观尺度联系起来的关键一步。我们使用的模拟方法将C-S-H纳米级构建单元的信息及其有效相互作用(从原子模拟和实验中获得)整合到一个用于聚集纳米颗粒的统计物理框架中。我们计算了材料的小角散射强度、孔径分布、比表面积、局部密度、压痕模量和硬度,从而对不同的实验研究有了定量的理解。我们的结果深入了解了水化早期形成的不均匀性如何在C-S-H结构中持续存在并影响硬化水泥浆体的力学性能。揭示水泥水化物中的此类联系可能具有开创性意义,而控制这些联系可能是实现水泥基材料更智能配合比设计的关键。