Suppr超能文献

使用高通量反应分子模拟和机器学习阐明钙硅水合凝胶的本构关系。

Elucidating the constitutive relationship of calcium-silicate-hydrate gel using high throughput reactive molecular simulations and machine learning.

机构信息

Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI, USA.

Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, USA.

出版信息

Sci Rep. 2020 Dec 7;10(1):21336. doi: 10.1038/s41598-020-78368-1.

Abstract

Prediction of material behavior using machine learning (ML) requires consistent, accurate, and, representative large data for training. However, such consistent and reliable experimental datasets are not always available for materials. To address this challenge, we synergistically integrate ML with high-throughput reactive molecular dynamics (MD) simulations to elucidate the constitutive relationship of calcium-silicate-hydrate (C-S-H) gel-the primary binding phase in concrete formed via the hydration of ordinary portland cement. Specifically, a highly consistent dataset on the nine elastic constants of more than 300 compositions of C-S-H gel is developed using high-throughput reactive simulations. From a comparative analysis of various ML algorithms including neural networks (NN) and Gaussian process (GP), we observe that NN provides excellent predictions. To interpret the predicted results from NN, we employ SHapley Additive exPlanations (SHAP), which reveals that the influence of silicate network on all the elastic constants of C-S-H is significantly higher than that of water and CaO content. Additionally, the water content is found to have a more prominent influence on the shear components than the normal components along the direction of the interlayer spaces within C-S-H. This result suggests that the in-plane elastic response is controlled by water molecules whereas the transverse response is mainly governed by the silicate network. Overall, by seamlessly integrating MD simulations with ML, this paper can be used as a starting point toward accelerated optimization of C-S-H nanostructures to design efficient cementitious binders with targeted properties.

摘要

使用机器学习 (ML) 预测材料行为需要用于训练的一致、准确和有代表性的大型数据。然而,并非总是可以获得用于材料的一致且可靠的实验数据集。为了解决这个挑战,我们协同地将 ML 与高通量反应分子动力学 (MD) 模拟相结合,以阐明钙硅酸盐水合物 (C-S-H) 凝胶的本构关系——这是通过普通波特兰水泥水化形成的混凝土中的主要结合相。具体来说,使用高通量反应模拟开发了一个关于 C-S-H 凝胶的 9 个弹性常数的超过 300 种组成的高度一致的数据集。通过对包括神经网络 (NN) 和高斯过程 (GP) 在内的各种 ML 算法的比较分析,我们观察到 NN 提供了出色的预测。为了解释 NN 的预测结果,我们采用 SHapley Additive exPlanations (SHAP),结果表明,硅酸盐网络对 C-S-H 的所有弹性常数的影响明显高于水和 CaO 含量的影响。此外,发现水含量对 C-S-H 层间空间方向上的剪切分量的影响比正常分量更为显著。这一结果表明,平面内弹性响应由水分子控制,而横向响应主要由硅酸盐网络控制。总体而言,通过将 MD 模拟与 ML 无缝集成,本文可以作为加速优化 C-S-H 纳米结构以设计具有目标性能的高效水泥基粘结剂的起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b52/7721899/111045772b25/41598_2020_78368_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验