Suppr超能文献

一种基于脑区划分的非参数独立成分分析算法及其在功能磁共振成像数据中的应用

A Parcellation Based Nonparametric Algorithm for Independent Component Analysis with Application to fMRI Data.

作者信息

Li Shanshan, Chen Shaojie, Yue Chen, Caffo Brian

机构信息

Department of Biostatistics, Indiana University Fairbanks School of Public Health, Indiana University Indianapolis, IN, USA.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University Baltimore, MD, USA.

出版信息

Front Neurosci. 2016 Jan 29;10:15. doi: 10.3389/fnins.2016.00015. eCollection 2016.

Abstract

Independent Component analysis (ICA) is a widely used technique for separating signals that have been mixed together. In this manuscript, we propose a novel ICA algorithm using density estimation and maximum likelihood, where the densities of the signals are estimated via p-spline based histogram smoothing and the mixing matrix is simultaneously estimated using an optimization algorithm. The algorithm is exceedingly simple, easy to implement and blind to the underlying distributions of the source signals. To relax the identically distributed assumption in the density function, a modified algorithm is proposed to allow for different density functions on different regions. The performance of the proposed algorithm is evaluated in different simulation settings. For illustration, the algorithm is applied to a research investigation with a large collection of resting state fMRI datasets. The results show that the algorithm successfully recovers the established brain networks.

摘要

独立成分分析(ICA)是一种广泛应用于分离混合信号的技术。在本论文中,我们提出了一种使用密度估计和最大似然的新型ICA算法,其中信号的密度通过基于p样条的直方图平滑进行估计,并且混合矩阵使用优化算法同时进行估计。该算法极其简单,易于实现,并且对源信号的潜在分布不敏感。为了放宽密度函数中同分布的假设,提出了一种改进算法,以允许在不同区域使用不同的密度函数。在不同的模拟设置下对所提出算法的性能进行了评估。为了说明,该算法应用于一项对大量静息态功能磁共振成像(fMRI)数据集的研究调查。结果表明,该算法成功恢复了已建立的脑网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/843f/4731731/525147852fb4/fnins-10-00015-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验