Endocrinology and Diabetology Unit, Medical Sciences Department, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
PLoS One. 2011;6(11):e27277. doi: 10.1371/journal.pone.0027277. Epub 2011 Nov 4.
It is known that bone mineral density (BMD) predicts the fracture's risk only partially and the severity and number of vertebral fractures are predictive of subsequent osteoporotic fractures (OF). Spinal deformity index (SDI) integrates the severity and number of morphometric vertebral fractures. Nowadays, there is interest in developing algorithms that use traditional statistics for predicting OF. Some studies suggest their poor sensitivity. Artificial Neural Networks (ANNs) could represent an alternative. So far, no study investigated ANNs ability in predicting OF and SDI. The aim of the present study is to compare ANNs and Logistic Regression (LR) in recognising, on the basis of osteoporotic risk-factors and other clinical information, patients with SDI≥1 and SDI≥5 from those with SDI = 0.
We compared ANNs prognostic performance with that of LR in identifying SDI≥1/SDI≥5 in 372 women with postmenopausal-osteoporosis (SDI≥1, n = 176; SDI = 0, n = 196; SDI≥5, n = 51), using 45 variables (44 clinical parameters plus BMD). ANNs were allowed to choose relevant input data automatically (TWIST-system-Semeion). Among 45 variables, 17 and 25 were selected by TWIST-system-Semeion, in SDI≥1 vs SDI = 0 (first) and SDI≥5 vs SDI = 0 (second) analysis. In the first analysis sensitivity of LR and ANNs was 35.8% and 72.5%, specificity 76.5% and 78.5% and accuracy 56.2% and 75.5%, respectively. In the second analysis, sensitivity of LR and ANNs was 37.3% and 74.8%, specificity 90.3% and 87.8%, and accuracy 63.8% and 81.3%, respectively.
ANNs showed a better performance in identifying both SDI≥1 and SDI≥5, with a higher sensitivity, suggesting its promising role in the development of algorithm for predicting OF.
已知骨密度(BMD)仅部分预测骨折风险,且椎体骨折的严重程度和数量可预测随后发生的骨质疏松性骨折(OF)。脊柱畸形指数(SDI)综合了形态计量椎体骨折的严重程度和数量。如今,人们对开发使用传统统计学预测 OF 的算法产生了兴趣。一些研究表明其敏感性较差。人工神经网络(ANNs)可能是一种替代方法。到目前为止,尚无研究探讨过 ANNs 预测 OF 和 SDI 的能力。本研究的目的是比较 ANNs 和逻辑回归(LR)在基于骨质疏松危险因素和其他临床信息的基础上,识别 SDI≥1 和 SDI≥5 的患者与 SDI=0 的患者的能力。
我们比较了 ANNs 的预测性能与 LR 在识别 372 例绝经后骨质疏松症患者(SDI≥1,n=176;SDI=0,n=196;SDI≥5,n=51)中的 SDI≥1/SDI≥5 的性能,使用了 45 个变量(44 个临床参数加 BMD)。ANNs 可以自动选择相关输入数据(TWIST 系统-Semeion)。在 45 个变量中,TWIST 系统-Semeion 在 SDI≥1 与 SDI=0(第一)和 SDI≥5 与 SDI=0(第二)分析中分别选择了 17 个和 25 个变量。在第一分析中,LR 和 ANNs 的敏感性分别为 35.8%和 72.5%,特异性分别为 76.5%和 78.5%,准确性分别为 56.2%和 75.5%。在第二分析中,LR 和 ANNs 的敏感性分别为 37.3%和 74.8%,特异性分别为 90.3%和 87.8%,准确性分别为 63.8%和 81.3%。
ANNs 在识别 SDI≥1 和 SDI≥5 方面表现出更好的性能,具有更高的敏感性,这表明其在开发预测 OF 的算法方面具有广阔的应用前景。