Suppr超能文献

急性肾损伤的细胞和分子机制

Cellular and Molecular Mechanisms of AKI.

作者信息

Agarwal Anupam, Dong Zheng, Harris Raymond, Murray Patrick, Parikh Samir M, Rosner Mitchell H, Kellum John A, Ronco Claudio

机构信息

Division of Nephrology, and Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;

Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, Georgia;

出版信息

J Am Soc Nephrol. 2016 May;27(5):1288-99. doi: 10.1681/ASN.2015070740. Epub 2016 Feb 9.

Abstract

In this article, we review the current evidence for the cellular and molecular mechanisms of AKI, focusing on epithelial cell pathobiology and related cell-cell interactions, using ischemic AKI as a model. Highlighted are the clinical relevance of cellular and molecular targets that have been investigated in experimental models of ischemic AKI and how such models might be improved to optimize translation into successful clinical trials. In particular, development of more context-specific animal models with greater relevance to human AKI is urgently needed. Comorbidities that could alter patient susceptibility to AKI, such as underlying diabetes, aging, obesity, cancer, and CKD, should also be considered in developing these models. Finally, harmonization between academia and industry for more clinically relevant preclinical testing of potential therapeutic targets and better translational clinical trial design is also needed to achieve the goal of developing effective interventions for AKI.

摘要

在本文中,我们以缺血性急性肾损伤(AKI)为模型,回顾了当前关于AKI细胞和分子机制的证据,重点关注上皮细胞病理生物学及相关细胞间相互作用。文中强调了在缺血性AKI实验模型中所研究的细胞和分子靶点的临床相关性,以及如何改进此类模型以优化向成功临床试验的转化。特别是,迫切需要开发与人类AKI更相关的、更具背景特异性的动物模型。在开发这些模型时,还应考虑可能改变患者对AKI易感性的合并症,如潜在的糖尿病、衰老、肥胖、癌症和慢性肾脏病(CKD)。最后,学术界和产业界之间还需要协调,以便对潜在治疗靶点进行更具临床相关性的临床前测试,并设计出更好的转化性临床试验,从而实现开发有效AKI干预措施的目标。

相似文献

1
Cellular and Molecular Mechanisms of AKI.
J Am Soc Nephrol. 2016 May;27(5):1288-99. doi: 10.1681/ASN.2015070740. Epub 2016 Feb 9.
2
Improving Translation from Preclinical Studies to Clinical Trials in Acute Kidney Injury.
Nephron. 2018;140(2):81-85. doi: 10.1159/000489576. Epub 2018 May 23.
4
Inflammation in AKI: Current Understanding, Key Questions, and Knowledge Gaps.
J Am Soc Nephrol. 2016 Feb;27(2):371-9. doi: 10.1681/ASN.2015030261. Epub 2015 Nov 11.
5
Therapeutic Targets of Human AKI: Harmonizing Human and Animal AKI.
J Am Soc Nephrol. 2016 Jan;27(1):44-8. doi: 10.1681/ASN.2015030233. Epub 2015 Oct 30.
6
Overcoming Translational Barriers in Acute Kidney Injury: A Report from an NIDDK Workshop.
Clin J Am Soc Nephrol. 2018 Jul 6;13(7):1113-1123. doi: 10.2215/CJN.06820617. Epub 2018 Mar 9.
7
The multifaceted role of the renal microvasculature during acute kidney injury.
Pediatr Nephrol. 2016 Aug;31(8):1231-40. doi: 10.1007/s00467-015-3231-2. Epub 2015 Oct 22.
8
Hypoxia as a key player in the AKI-to-CKD transition.
Am J Physiol Renal Physiol. 2014 Dec 1;307(11):F1187-95. doi: 10.1152/ajprenal.00425.2014. Epub 2014 Oct 1.
9
Bridging translation for acute kidney injury with better preclinical modeling of human disease.
Am J Physiol Renal Physiol. 2016 May 15;310(10):F972-84. doi: 10.1152/ajprenal.00552.2015. Epub 2016 Mar 9.
10
Renal Oxygenation and Hemodynamics in Kidney Injury.
Nephron. 2017;137(4):260-263. doi: 10.1159/000477830. Epub 2017 Jun 15.

引用本文的文献

2
Molecular Mechanisms of Sepsis-Associated Acute Kidney Injury.
J Am Soc Nephrol. 2025 Jul 2. doi: 10.1681/ASN.0000000809.
5
exacerbates acute renal inflammation by enhancing N4-acetylcytidine modification of the CCL2/CXCL1 axis.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2418409122. doi: 10.1073/pnas.2418409122. Epub 2025 Apr 22.
7
Oxidative stress and NRF2 signaling in kidney injury.
Toxicol Res. 2024 Dec 22;41(2):131-147. doi: 10.1007/s43188-024-00272-x. eCollection 2025 Mar.
8
Circadian Clock Gene Bmal1: A Molecular Bridge from AKI to CKD.
Biomolecules. 2025 Jan 7;15(1):77. doi: 10.3390/biom15010077.
10
GALNT3 in Ischemia-Reperfusion Injury of the Kidney.
J Am Soc Nephrol. 2025 Mar 1;36(3):348-360. doi: 10.1681/ASN.0000000530. Epub 2024 Oct 24.

本文引用的文献

1
Targeting Endogenous Repair Pathways after AKI.
J Am Soc Nephrol. 2016 Apr;27(4):990-8. doi: 10.1681/ASN.2015030286. Epub 2015 Nov 18.
2
Inflammation in AKI: Current Understanding, Key Questions, and Knowledge Gaps.
J Am Soc Nephrol. 2016 Feb;27(2):371-9. doi: 10.1681/ASN.2015030261. Epub 2015 Nov 11.
3
Endoplasmic reticulum stress in kidney function and disease.
Curr Opin Nephrol Hypertens. 2015 Jul;24(4):345-50. doi: 10.1097/MNH.0000000000000141.
4
5
Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ.
Redox Biol. 2015 Aug;5:163-168. doi: 10.1016/j.redox.2015.04.008. Epub 2015 Apr 29.
6
Regulation of Apoptotic Endonucleases by EndoG.
DNA Cell Biol. 2015 May;34(5):316-26. doi: 10.1089/dna.2014.2772. Epub 2015 Apr 7.
7
MicroRNA-687 Induced by Hypoxia-Inducible Factor-1 Targets Phosphatase and Tensin Homolog in Renal Ischemia-Reperfusion Injury.
J Am Soc Nephrol. 2015 Jul;26(7):1588-96. doi: 10.1681/ASN.2014050463. Epub 2015 Jan 13.
8
Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice.
Nat Cell Biol. 2014 Dec;16(12):1180-91. doi: 10.1038/ncb3064. Epub 2014 Nov 17.
9
Conditional knockout of proximal tubule mitofusin 2 accelerates recovery and improves survival after renal ischemia.
J Am Soc Nephrol. 2015 May;26(5):1092-102. doi: 10.1681/ASN.2014010126. Epub 2014 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验