Ruban Alexander V
School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
Plant Physiol. 2016 Apr;170(4):1903-16. doi: 10.1104/pp.15.01935. Epub 2016 Feb 10.
We review the mechanism underlying nonphotochemical chlorophyll fluorescence quenching (NPQ) and its role in protecting plants against photoinhibition. This review includes an introduction to this phenomenon, a brief history of major milestones in our understanding of NPQ, definitions, and a discussion of quantitative measurements of NPQ We discuss the current knowledge and unknown aspects in the NPQ scenario, including the following: ΔpH, the proton gradient (trigger); light-harvesting complex II (LHCII), PSII light harvesting antenna (site); and changes in the antenna induced by ΔpH (change), which lead to the creation of the quencher We conclude that the minimum requirements for NPQ in vivo are ΔpH, LHCII complexes, and the PsbS protein. We highlight the most important unknown in the NPQ scenario, the mechanism by which PsbS acts upon the LHCII antenna. Finally, we describe a novel, emerging technology for assessing the photoprotective "power" of NPQ and the important findings obtained through this technology.
我们回顾了非光化学叶绿素荧光猝灭(NPQ)的潜在机制及其在保护植物免受光抑制方面的作用。本综述包括对这一现象的介绍、我们对NPQ理解过程中主要里程碑的简要历史、定义以及对NPQ定量测量的讨论。我们讨论了NPQ情形中的现有知识和未知方面,包括以下内容:ΔpH,质子梯度(触发因素);光系统II捕光复合体II(LHCII),光系统II捕光天线(位点);以及由ΔpH引起的天线变化(改变),这导致猝灭剂的产生。我们得出结论,体内NPQ的最低要求是ΔpH、LHCII复合体和PsbS蛋白。我们强调了NPQ情形中最重要的未知因素,即PsbS作用于LHCII天线的机制。最后,我们描述了一种用于评估NPQ光保护“能力”的新兴技术以及通过该技术获得的重要发现。