Suppr超能文献

蝗虫嗅觉通路上气味剂在各层间的分类

Classification of odorants across layers in locust olfactory pathway.

作者信息

Sanda Pavel, Kee Tiffany, Gupta Nitin, Stopfer Mark, Bazhenov Maxim

机构信息

Department of Medicine, University of California, San Diego, California;

Department of Medicine, University of California, San Diego, California; Department of Cell Biology and Neuroscience, University of California, Riverside, California;

出版信息

J Neurophysiol. 2016 May 1;115(5):2303-16. doi: 10.1152/jn.00921.2015. Epub 2016 Feb 10.

Abstract

Olfactory processing takes place across multiple layers of neurons from the transduction of odorants in the periphery, to odor quality processing, learning, and decision making in higher olfactory structures. In insects, projection neurons (PNs) in the antennal lobe send odor information to the Kenyon cells (KCs) of the mushroom bodies and lateral horn neurons (LHNs). To examine the odor information content in different structures of the insect brain, antennal lobe, mushroom bodies and lateral horn, we designed a model of the olfactory network based on electrophysiological recordings made in vivo in the locust. We found that populations of all types (PNs, LHNs, and KCs) had lower odor classification error rates than individual cells of any given type. This improvement was quantitatively different from that observed using uniform populations of identical neurons compared with spatially structured population of neurons tuned to different odor features. This result, therefore, reflects an emergent network property. Odor classification improved with increasing stimulus duration: for similar odorants, KC and LHN ensembles reached optimal discrimination within the first 300-500 ms of the odor response. Performance improvement with time was much greater for a population of cells than for individual neurons. We conclude that, for PNs, LHNs, and KCs, ensemble responses are always much more informative than single-cell responses, despite the accumulation of noise along with odor information.

摘要

嗅觉处理过程涉及多层神经元,从外周气味分子的转导,到高级嗅觉结构中的气味质量处理、学习和决策。在昆虫中,触角叶中的投射神经元(PNs)将气味信息发送到蘑菇体的肯扬细胞(KCs)和侧角神经元(LHNs)。为了研究昆虫大脑不同结构(触角叶、蘑菇体和侧角)中的气味信息内容,我们基于在蝗虫体内进行的电生理记录设计了一个嗅觉网络模型。我们发现,所有类型(PNs、LHNs和KCs)的群体比任何给定类型的单个细胞具有更低的气味分类错误率。与调谐到不同气味特征的神经元空间结构化群体相比,这种改进在数量上与使用相同神经元的均匀群体所观察到的情况不同。因此,这一结果反映了一种涌现的网络特性。随着刺激持续时间的增加,气味分类得到改善:对于相似的气味分子,KC和LHN集合在气味反应的前300 - 500毫秒内达到最佳辨别能力。细胞群体随时间的性能提升比单个神经元大得多。我们得出结论,对于PNs、LHNs和KCs,尽管噪声与气味信息一起积累,但群体反应始终比单细胞反应提供更多信息。

相似文献

1
Classification of odorants across layers in locust olfactory pathway.
J Neurophysiol. 2016 May 1;115(5):2303-16. doi: 10.1152/jn.00921.2015. Epub 2016 Feb 10.
2
In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee.
PLoS One. 2018 Jan 19;13(1):e0191425. doi: 10.1371/journal.pone.0191425. eCollection 2018.
3
Encoding of mixtures in a simple olfactory system.
Neuron. 2013 Dec 4;80(5):1246-62. doi: 10.1016/j.neuron.2013.08.026. Epub 2013 Nov 7.
4
A neural network model of general olfactory coding in the insect antennal lobe.
Chem Senses. 1999 Aug;24(4):351-72. doi: 10.1093/chemse/24.4.351.
5
Intensity versus identity coding in an olfactory system.
Neuron. 2003 Sep 11;39(6):991-1004. doi: 10.1016/j.neuron.2003.08.011.
6
Olfactory coding in the honeybee lateral horn.
Curr Biol. 2014 Mar 3;24(5):561-7. doi: 10.1016/j.cub.2014.01.063. Epub 2014 Feb 20.
7
Multiple network properties overcome random connectivity to enable stereotypic sensory responses.
Nat Commun. 2020 Feb 24;11(1):1023. doi: 10.1038/s41467-020-14836-6.
8
Relationship between afferent and central temporal patterns in the locust olfactory system.
J Neurosci. 1999 Jan 1;19(1):381-90. doi: 10.1523/JNEUROSCI.19-01-00381.1999.
9
Effect of Circuit Structure on Odor Representation in the Insect Olfactory System.
eNeuro. 2020 May 15;7(3). doi: 10.1523/ENEURO.0130-19.2020. Print 2020 May/Jun.
10
Learning classification in the olfactory system of insects.
Neural Comput. 2004 Aug;16(8):1601-40. doi: 10.1162/089976604774201613.

引用本文的文献

1
Plasticity in inhibitory networks improves pattern separation in early olfactory processing.
Commun Biol. 2025 Apr 9;8(1):590. doi: 10.1038/s42003-025-07879-2.
2
Plasticity in inhibitory networks improves pattern separation in early olfactory processing.
bioRxiv. 2025 Feb 20:2024.01.24.576675. doi: 10.1101/2024.01.24.576675.
3
Gain modulation and odor concentration invariance in early olfactory networks.
PLoS Comput Biol. 2023 Jun 21;19(6):e1011176. doi: 10.1371/journal.pcbi.1011176. eCollection 2023 Jun.
4
The functional logic of odor information processing in the Drosophila antennal lobe.
PLoS Comput Biol. 2023 Apr 21;19(4):e1011043. doi: 10.1371/journal.pcbi.1011043. eCollection 2023 Apr.
6
Disorder and the Neural Representation of Complex Odors.
Front Comput Neurosci. 2022 Aug 8;16:917786. doi: 10.3389/fncom.2022.917786. eCollection 2022.
7
What the odor is not: Estimation by elimination.
Phys Rev E. 2021 Aug;104(2-1):024415. doi: 10.1103/PhysRevE.104.024415.
8
Differential effects of adaptation on odor discrimination.
J Neurophysiol. 2018 Jul 1;120(1):171-185. doi: 10.1152/jn.00389.2017. Epub 2018 Mar 28.

本文引用的文献

1
Circuit oscillations in odor perception and memory.
Prog Brain Res. 2014;208:223-51. doi: 10.1016/B978-0-444-63350-7.00009-7.
2
A spatiotemporal coding mechanism for background-invariant odor recognition.
Nat Neurosci. 2013 Dec;16(12):1830-9. doi: 10.1038/nn.3570. Epub 2013 Nov 3.
3
The limits of deliberation in a perceptual decision task.
Neuron. 2013 Apr 24;78(2):339-51. doi: 10.1016/j.neuron.2013.02.010. Epub 2013 Mar 28.
4
Excitatory local interneurons enhance tuning of sensory information.
PLoS Comput Biol. 2012;8(7):e1002563. doi: 10.1371/journal.pcbi.1002563. Epub 2012 Jul 12.
5
Odor representations in olfactory cortex: distributed rate coding and decorrelated population activity.
Neuron. 2012 Jun 21;74(6):1087-98. doi: 10.1016/j.neuron.2012.04.021.
6
Functional analysis of a higher olfactory center, the lateral horn.
J Neurosci. 2012 Jun 13;32(24):8138-48. doi: 10.1523/JNEUROSCI.1066-12.2012.
7
Precise olfactory responses tile the sniff cycle.
Nat Neurosci. 2011 Jul 17;14(8):1039-44. doi: 10.1038/nn.2877.
8
Normalization for sparse encoding of odors by a wide-field interneuron.
Science. 2011 May 6;332(6030):721-5. doi: 10.1126/science.1201835.
9
Robust odor coding via inhalation-coupled transient activity in the mammalian olfactory bulb.
Neuron. 2010 Nov 4;68(3):570-85. doi: 10.1016/j.neuron.2010.09.040.
10
Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors.
J Neurosci. 2010 Feb 10;30(6):1994-2006. doi: 10.1523/JNEUROSCI.5639-09.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验