Suppr超能文献

嗅觉受体神经元利用增益控制和互补动力学来编码间歇性气味刺激。

Olfactory receptor neurons use gain control and complementary kinetics to encode intermittent odorant stimuli.

作者信息

Gorur-Shandilya Srinivas, Demir Mahmut, Long Junjiajia, Clark Damon A, Emonet Thierry

机构信息

Interdepartmental Neuroscience Program, Yale University, New Haven, United States.

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States.

出版信息

Elife. 2017 Jun 28;6:e27670. doi: 10.7554/eLife.27670.

Abstract

Insects find food and mates by navigating odorant plumes that can be highly intermittent, with intensities and durations that vary rapidly over orders of magnitude. Much is known about olfactory responses to pulses and steps, but it remains unclear how olfactory receptor neurons (ORNs) detect the intensity and timing of natural stimuli, where the absence of scale in the signal makes detection a formidable olfactory task. By stimulating ORNs in vivo with naturalistic and Gaussian stimuli, we show that ORNs adapt to stimulus mean and variance, and that adaptation and saturation contribute to naturalistic sensing. Mean-dependent gain control followed the Weber-Fechner relation and occurred primarily at odor transduction, while variance-dependent gain control occurred at both transduction and spiking. Transduction and spike generation possessed complementary kinetic properties, that together preserved the timing of odorant encounters in ORN spiking, regardless of intensity. Such scale-invariance could be critical during odor plume navigation.

摘要

昆虫通过在气味羽流中导航来寻找食物和配偶,这些气味羽流可能高度不连续,其强度和持续时间会在几个数量级内迅速变化。关于对脉冲和阶跃的嗅觉反应我们已经了解很多,但嗅觉受体神经元(ORN)如何检测自然刺激的强度和时间仍不清楚,因为信号中缺乏尺度使得检测成为一项艰巨的嗅觉任务。通过用自然主义和高斯刺激在体内刺激ORN,我们表明ORN会适应刺激的均值和方差,并且适应和饱和有助于自然主义感知。均值依赖的增益控制遵循韦伯 - 费希纳关系,主要发生在气味转导过程中,而方差依赖的增益控制则发生在转导和发放过程中。转导和发放产生具有互补的动力学特性,无论强度如何,它们共同在ORN发放中保留了气味接触的时间。这种尺度不变性在气味羽流导航过程中可能至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a848/5524537/f725a178ed33/elife-27670-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验