Suppr超能文献

植物中RNA二级结构的保守性与功能

The Conservation and Function of RNA Secondary Structure in Plants.

作者信息

Vandivier Lee E, Anderson Stephen J, Foley Shawn W, Gregory Brian D

机构信息

Department of Biology, School of Arts and Sciences, and.

Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; email:

出版信息

Annu Rev Plant Biol. 2016 Apr 29;67:463-88. doi: 10.1146/annurev-arplant-043015-111754. Epub 2016 Feb 8.

Abstract

RNA transcripts fold into secondary structures via intricate patterns of base pairing. These secondary structures impart catalytic, ligand binding, and scaffolding functions to a wide array of RNAs, forming a critical node of biological regulation. Among their many functions, RNA structural elements modulate epigenetic marks, alter mRNA stability and translation, regulate alternative splicing, transduce signals, and scaffold large macromolecular complexes. Thus, the study of RNA secondary structure is critical to understanding the function and regulation of RNA transcripts. Here, we review the origins, form, and function of RNA secondary structure, focusing on plants. We then provide an overview of methods for probing secondary structure, from physical methods such as X-ray crystallography and nuclear magnetic resonance (NMR) imaging to chemical and nuclease probing methods. Combining these latter methods with high-throughput sequencing has enabled them to scale across whole transcriptomes, yielding tremendous new insights into the form and function of RNA secondary structure.

摘要

RNA转录本通过复杂的碱基配对模式折叠成二级结构。这些二级结构赋予了各种各样的RNA催化、配体结合和支架功能,形成了生物调控的关键节点。在其众多功能中,RNA结构元件可调节表观遗传标记、改变mRNA稳定性和翻译、调控可变剪接、转导信号以及搭建大型大分子复合物。因此,研究RNA二级结构对于理解RNA转录本的功能和调控至关重要。在这里,我们综述了RNA二级结构的起源、形式和功能,重点关注植物。然后,我们概述了探测二级结构的方法,从诸如X射线晶体学和核磁共振(NMR)成像等物理方法到化学和核酸酶探测方法。将这些后者的方法与高通量测序相结合,使它们能够扩展到整个转录组,从而对RNA二级结构的形式和功能产生了巨大的新见解。

相似文献

1
The Conservation and Function of RNA Secondary Structure in Plants.植物中RNA二级结构的保守性与功能
Annu Rev Plant Biol. 2016 Apr 29;67:463-88. doi: 10.1146/annurev-arplant-043015-111754. Epub 2016 Feb 8.
2
Transcriptome-wide measurement of plant RNA secondary structure.植物RNA二级结构的全转录组测量
Curr Opin Plant Biol. 2015 Oct;27:36-43. doi: 10.1016/j.pbi.2015.05.021. Epub 2015 Jun 26.
9
Genome-Wide Approaches for RNA Structure Probing.用于RNA结构探测的全基因组方法。
Adv Exp Med Biol. 2016;907:29-59. doi: 10.1007/978-3-319-29073-7_2.

引用本文的文献

8
Modified RNAs and predictions with the ViennaRNA Package.修饰 RNA 及其与 ViennaRNA 包的预测。
Bioinformatics. 2023 Nov 1;39(11). doi: 10.1093/bioinformatics/btad696.
9
Extra- and intranuclear heat perception and triggering mechanisms in plants.植物中核外和核内的热感知及触发机制
Front Plant Sci. 2023 Oct 4;14:1276649. doi: 10.3389/fpls.2023.1276649. eCollection 2023.
10
Sulfonylation of RNA 2'-OH groups.RNA 2'-羟基基团的磺酰化反应。
ACS Cent Sci. 2023 Mar 1;9(3):531-539. doi: 10.1021/acscentsci.2c01237. eCollection 2023 Mar 22.

本文引用的文献

1
Transcriptome-wide measurement of plant RNA secondary structure.植物RNA二级结构的全转录组测量
Curr Opin Plant Biol. 2015 Oct;27:36-43. doi: 10.1016/j.pbi.2015.05.021. Epub 2015 Jun 26.
2
Long non-coding RNAs and their biological roles in plants.长链非编码RNA及其在植物中的生物学作用。
Genomics Proteomics Bioinformatics. 2015 Jun;13(3):137-47. doi: 10.1016/j.gpb.2015.02.003. Epub 2015 Apr 30.
3
HOTAIR forms an intricate and modular secondary structure.HOTAIR形成一种复杂且模块化的二级结构。
Mol Cell. 2015 Apr 16;58(2):353-61. doi: 10.1016/j.molcel.2015.03.006. Epub 2015 Apr 9.
4
Structural imprints in vivo decode RNA regulatory mechanisms.体内的结构印记可解码RNA调控机制。
Nature. 2015 Mar 26;519(7544):486-90. doi: 10.1038/nature14263. Epub 2015 Mar 18.
5
Characterizing excited conformational states of RNA by NMR spectroscopy.通过核磁共振光谱法表征RNA的激发构象状态。
Curr Opin Struct Biol. 2015 Feb;30:134-146. doi: 10.1016/j.sbi.2015.02.011. Epub 2015 Mar 10.
6
The dynamics of the RNA world: insights and challenges.RNA世界的动力学:见解与挑战。
Ann N Y Acad Sci. 2015 Apr;1341:75-95. doi: 10.1111/nyas.12700. Epub 2015 Mar 3.
9
Evolution of the division of labor between genes and enzymes in the RNA world.RNA世界中基因与酶之间分工的演变。
PLoS Comput Biol. 2014 Dec 4;10(12):e1003936. doi: 10.1371/journal.pcbi.1003936. eCollection 2014 Dec.
10
The ribosome emerges from a black box.核糖体从黑匣子里出现。
Cell. 2014 Nov 20;159(5):979-984. doi: 10.1016/j.cell.2014.10.052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验