Suppr超能文献

基于机器学习利用八个基因表达谱对弥漫性大B细胞淋巴瘤患者进行分类

Machine learning-based classification of diffuse large B-cell lymphoma patients by eight gene expression profiles.

作者信息

Zhao Shuangtao, Dong Xiaoli, Shen Wenzhi, Ye Zhen, Xiang Rong

机构信息

School of Medicine, Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.

Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.

出版信息

Cancer Med. 2016 May;5(5):837-52. doi: 10.1002/cam4.650. Epub 2016 Feb 11.

Abstract

Gene expression profiling (GEP) had divided the diffuse large B-cell lymphoma (DLBCL) into molecular subgroups: germinal center B-cell like (GCB), activated B-cell like (ABC), and unclassified (UC) subtype. However, this classification with prognostic significance was not applied into clinical practice since there were more than 1000 genes to detect and interpreting was difficult. To classify cancer samples validly, eight significant genes (MYBL1, LMO2, BCL6, MME, IRF4, NFKBIZ, PDE4B, and SLA) were selected in 414 patients treated with CHOP/R-CHOP chemotherapy from Gene Expression Omnibus (GEO) data sets. Cutoffs for each gene were obtained using receiver-operating characteristic curves (ROC) new model based on the support vector machine (SVM) estimated the probability of membership into one of two subgroups: GCB and Non-GCB (ABC and UC). Furtherly, multivariate analysis validated the model in another two cohorts including 855 cases in all. As a result, patients in the training and validated cohorts were stratified into two subgroups with 94.0%, 91.0%, and 94.4% concordance with GEP, respectively. Patients with Non-GCB subtype had significantly poorer outcomes than that with GCB subtype, which agreed with the prognostic power of GEP classification. Moreover, the similar prognosis received in the low (0-2) and high (3-5) IPI scores group demonstrated that the new model was independent of IPI as well as GEP method. In conclusion, our new model could stratify DLBCL patients with CHOP/R-CHOP regimen matching GEP subtypes effectively.

摘要

基因表达谱分析(GEP)已将弥漫性大B细胞淋巴瘤(DLBCL)分为分子亚组:生发中心B细胞样(GCB)、活化B细胞样(ABC)和未分类(UC)亚型。然而,这种具有预后意义的分类尚未应用于临床实践,因为要检测1000多个基因且解读困难。为了有效分类癌症样本,从基因表达综合数据库(GEO)数据集中选取了414例接受CHOP/R-CHOP化疗的患者中的8个显著基因(MYBL1、LMO2、BCL6、MME、IRF4、NFKBIZ、PDE4B和SLA)。使用基于支持向量机(SVM)的新模型——受试者操作特征曲线(ROC)获得每个基因的临界值,该模型估计了属于两个亚组之一(GCB和非GCB(ABC和UC))的概率。此外,多变量分析在另外两个队列(共855例)中验证了该模型。结果,训练队列和验证队列中的患者被分层为两个亚组,分别与GEP的一致性为94.0%、91.0%和94.4%。非GCB亚型患者的预后明显比GCB亚型患者差,这与GEP分类的预后能力一致。此外,低(0 - 2)和高(3 - 5)国际预后指数(IPI)评分组的相似预后表明,新模型独立于IPI以及GEP方法。总之,我们的新模型可以有效地将接受CHOP/R-CHOP方案治疗的DLBCL患者分层为与GEP亚型匹配的亚组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e630/4864813/bda90f613336/CAM4-5-837-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验