Kesel Sara, Grumbein Stefan, Gümperlein Ina, Tallawi Marwa, Marel Anna-Kristina, Lieleg Oliver, Opitz Madeleine
Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
Institute of Medical Engineering and Department of Mechanical Engineering, Technische Universität München, Garching, Germany.
Appl Environ Microbiol. 2016 Apr 4;82(8):2424-2432. doi: 10.1128/AEM.03957-15. Print 2016 Apr.
Many bacteria form surface-attached communities known as biofilms. Due to the extreme resistance of these bacterial biofilms to antibiotics and mechanical stresses, biofilms are of growing interest not only in microbiology but also in medicine and industry. Previous studies have determined the extracellular polymeric substances present in the matrix of biofilms formed by Bacillus subtilis NCIB 3610. However, studies on the physical properties of biofilms formed by this strain are just emerging. In particular, quantitative data on the contributions of biofilm matrix biopolymers to these physical properties are lacking. Here, we quantitatively investigated three physical properties of B. subtilis NCIB 3610 biofilms: the surface roughness and stiffness and the bulk viscoelasticity of these biofilms. We show how specific biomolecules constituting the biofilm matrix formed by this strain contribute to those biofilm properties. In particular, we demonstrate that the surface roughness and surface elasticity of 1-day-old NCIB 3610 biofilms are strongly affected by the surface layer protein BslA. For a second strain,B. subtilis B-1, which forms biofilms containing mainly γ-polyglutamate, we found significantly different physical biofilm properties that are also differently affected by the commonly used antibacterial agent ethanol. We show that B-1 biofilms are protected from ethanol-induced changes in the biofilm's stiffness and that this protective effect can be transferred to NCIB 3610 biofilms by the sole addition of γ-polyglutamate to growing NCIB 3610 biofilms. Together, our results demonstrate the importance of specific biofilm matrix components for the distinct physical properties of B. subtilis biofilms.
许多细菌会形成附着于表面的群落,即生物膜。由于这些细菌生物膜对抗生素和机械应力具有极强的抗性,生物膜不仅在微生物学领域,而且在医学和工业领域都越来越受到关注。先前的研究已经确定了枯草芽孢杆菌NCIB 3610形成的生物膜基质中存在的细胞外聚合物。然而,关于该菌株形成的生物膜物理性质的研究才刚刚起步。特别是,缺乏关于生物膜基质生物聚合物对这些物理性质贡献的定量数据。在这里,我们定量研究了枯草芽孢杆菌NCIB 3610生物膜的三种物理性质:这些生物膜的表面粗糙度、硬度以及整体粘弹性。我们展示了构成该菌株形成的生物膜基质的特定生物分子如何对这些生物膜性质产生影响。特别是,我们证明了1日龄的NCIB 3610生物膜的表面粗糙度和表面弹性受到表层蛋白BslA的强烈影响。对于第二种菌株枯草芽孢杆菌B - 1,它形成的生物膜主要含有γ-聚谷氨酸,我们发现其生物膜的物理性质有显著差异,并且这些性质受常用抗菌剂乙醇的影响也不同。我们表明,B - 1生物膜能免受乙醇引起的生物膜硬度变化的影响,并且仅通过向生长中的NCIB 3610生物膜中添加γ-聚谷氨酸,这种保护作用就能转移到NCIB 3610生物膜上。总之,我们的结果证明了特定生物膜基质成分对枯草芽孢杆菌生物膜独特物理性质的重要性。