Suppr超能文献

非驯化菌株 NCIB 3610 中的 6S-2 RNA 缺失导致生物膜去抑制表型。

6S-2 RNA deletion in the undomesticated strain NCIB 3610 causes a biofilm derepression phenotype.

机构信息

Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marburg, Germany.

Center for Synthetic Microbiology, Bioinformatics Core Facility , Marburg, Germany.

出版信息

RNA Biol. 2021 Jan;18(1):79-92. doi: 10.1080/15476286.2020.1795408. Epub 2020 Aug 30.

Abstract

Bacterial 6S RNA regulates transcription via binding to the active site of RNA polymerase holoenzymes. 6S RNA has been identified in the majority of bacteria, in most cases encoded by a single gene. Firmicutes including encode two 6S RNA paralogs, 6S-1 and 6S-2 RNA. Hypothesizing that the regulatory role of 6S RNAs may be particularly important under natural, constantly changing environmental conditions, we constructed 6S RNA deletion mutants of the undomesticated wild-type strain NCIB 3610. We observed a strong phenotype for the ∆6S-2 RNA strain that showed increased biofilm formation on solid media and the ability to form surface-attached biofilms in liquid culture. This phenotype remained undetected in derived laboratory strains (168, PY79) that are defective in biofilm formation. Quantitative RT-PCR data revealed transcriptional upregulation of biofilm marker genes such as and in the ∆6S-2 RNA strain, particularly during transition from exponential to stationary growth phase. Salt stress, which blocks sporulation at a very early stage, was found to override the derepressed biofilm phenotype of the ∆6S-2 RNA strain. Furthermore, the ∆6S-2 RNA strain showed retarded swarming activity and earlier spore formation. Finally, the ∆6S-1&2 RNA double deletion strain showed a prolonged lag phase of growth under oxidative, high salt and alkaline stress conditions, suggesting that the interplay of both 6S RNAs in optimizes and fine-tunes transcriptomic adaptations, thereby contributing to the fitness of under the unsteady and temporarily harsh conditions encountered in natural habitats.

摘要

细菌 6S RNA 通过与 RNA 聚合酶全酶的活性位点结合来调节转录。在大多数情况下,6S RNA 由单个基因编码,已在大多数细菌中发现。厚壁菌门(Firmicutes)包括 在内,编码两个 6S RNA 旁系同源物,6S-1 和 6S-2 RNA。假设 6S RNA 的调节作用在自然、不断变化的环境条件下可能特别重要,我们构建了未驯化的野生型菌株 NCIB 3610 的 6S RNA 缺失突变体。我们观察到 ∆6S-2 RNA 菌株表现出强烈的表型,即在固体培养基上形成更多的生物膜,并且能够在液体培养中形成表面附着的生物膜。这种表型在衍生的实验室菌株(168、PY79)中未被检测到,这些菌株在生物膜形成方面存在缺陷。定量 RT-PCR 数据显示,∆6S-2 RNA 菌株中生物膜标记基因如 和 的转录上调,特别是在从指数生长到静止生长阶段的转变过程中。发现盐胁迫会阻止早期孢子形成,从而使 ∆6S-2 RNA 菌株中被解除抑制的生物膜表型失效。此外,∆6S-2 RNA 菌株表现出较慢的泳动活性和更早的孢子形成。最后,∆6S-1&2 RNA 双缺失菌株在氧化、高盐和碱性胁迫条件下表现出生长的延长迟滞期,表明两种 6S RNA 在 中的相互作用优化和微调了转录组适应,从而有助于 在自然栖息地中遇到的不稳定和暂时苛刻条件下的适应性。

相似文献

1
6S-2 RNA deletion in the undomesticated strain NCIB 3610 causes a biofilm derepression phenotype.
RNA Biol. 2021 Jan;18(1):79-92. doi: 10.1080/15476286.2020.1795408. Epub 2020 Aug 30.
2
Phenotypic characterization and complementation analysis of Bacillus subtilis 6S RNA single and double deletion mutants.
Biochimie. 2015 Oct;117:87-99. doi: 10.1016/j.biochi.2014.12.019. Epub 2015 Jan 8.
3
6S-1 RNA function leads to a delay in sporulation in Bacillus subtilis.
J Bacteriol. 2013 May;195(9):2079-86. doi: 10.1128/JB.00050-13. Epub 2013 Mar 1.
4
kinA mRNA is missing a stop codon in the undomesticated Bacillus subtilis strain ATCC 6051.
Microbiology (Reading). 2008 Jan;154(Pt 1):54-63. doi: 10.1099/mic.0.2007/011783-0.
7
Comparison of the Genetic Features Involved in Biofilm Formation Using Multi-Culturing Approaches.
Microorganisms. 2021 Mar 18;9(3):633. doi: 10.3390/microorganisms9030633.
8
Diverse LXG toxin and antitoxin systems specifically mediate intraspecies competition in Bacillus subtilis biofilms.
PLoS Genet. 2021 Jul 19;17(7):e1009682. doi: 10.1371/journal.pgen.1009682. eCollection 2021 Jul.
9
6S RNA, a global regulator of transcription in Escherichia coli, Bacillus subtilis, and beyond.
Annu Rev Microbiol. 2014;68:45-60. doi: 10.1146/annurev-micro-092611-150135. Epub 2014 Apr 10.
10
Calcium Prevents Biofilm Dispersion in Bacillus subtilis.
J Bacteriol. 2021 Jun 22;203(14):e0011421. doi: 10.1128/JB.00114-21.

引用本文的文献

1
6S-1 pRNA 9-mers are a prominent length species during outgrowth of cells from extended stationary phase.
RNA Biol. 2025 Dec;22(1):1-14. doi: 10.1080/15476286.2025.2484519. Epub 2025 Apr 14.
2
The role of fluid friction in streamer formation and biofilm growth.
NPJ Biofilms Microbiomes. 2025 Jan 15;11(1):17. doi: 10.1038/s41522-024-00633-2.
3
RIP-seq reveals RNAs that interact with RNA polymerase and primary sigma factors in bacteria.
Nucleic Acids Res. 2024 May 8;52(8):4604-4626. doi: 10.1093/nar/gkae081.
4
Processing and decay of 6S-1 and 6S-2 RNAs in .
RNA. 2023 Oct;29(10):1481-1499. doi: 10.1261/rna.079666.123. Epub 2023 Jun 27.
5
A Sporulation-Specific sRNA Bvs196 Contributing to the Developing Spore in .
Microorganisms. 2022 May 12;10(5):1015. doi: 10.3390/microorganisms10051015.
6
Involvement of 6S RNA in Oxidative Stress Response.
Int J Mol Sci. 2022 Mar 26;23(7):3653. doi: 10.3390/ijms23073653.
7
6S RNA-Dependent Susceptibility to RNA Polymerase Inhibitors.
Antimicrob Agents Chemother. 2022 May 17;66(5):e0243521. doi: 10.1128/aac.02435-21. Epub 2022 Apr 7.

本文引用的文献

1
Regulation of Biofilm Aging and Dispersal in by the Alternative Sigma Factor SigB.
J Bacteriol. 2018 Dec 20;201(2). doi: 10.1128/JB.00473-18. Print 2019 Jan 15.
2
Division of Labor during Biofilm Matrix Production.
Curr Biol. 2018 Jun 18;28(12):1903-1913.e5. doi: 10.1016/j.cub.2018.04.046. Epub 2018 Jun 7.
3
6S RNA plays a role in recovery from nitrogen depletion in Synechocystis sp. PCC 6803.
BMC Microbiol. 2017 Dec 8;17(1):229. doi: 10.1186/s12866-017-1137-9.
4
Minimal and RNA-free RNase P in .
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11121-11126. doi: 10.1073/pnas.1707862114. Epub 2017 Oct 3.
5
6S RNA Mimics B-Form DNA to Regulate Escherichia coli RNA Polymerase.
Mol Cell. 2017 Oct 19;68(2):388-397.e6. doi: 10.1016/j.molcel.2017.09.006. Epub 2017 Oct 5.
7
6S RNA is involved in acid resistance and invasion of epithelial cells in Salmonella enterica serovar Typhimurium.
Future Microbiol. 2017 Sep;12:1045-1057. doi: 10.2217/fmb-2017-0055. Epub 2017 Aug 10.
9
New Functions and Subcellular Localization Patterns of c-di-GMP Components (GGDEF Domain Proteins) in .
Front Microbiol. 2017 May 9;8:794. doi: 10.3389/fmicb.2017.00794. eCollection 2017.
10
Complete Genome Sequence of Undomesticated Strain NCIB 3610.
Genome Announc. 2017 May 18;5(20):e00364-17. doi: 10.1128/genomeA.00364-17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验