Suppr超能文献

在人类海马体中以微观分辨率对纤维束的空间走向进行直接可视化和映射。

Direct Visualization and Mapping of the Spatial Course of Fiber Tracts at Microscopic Resolution in the Human Hippocampus.

作者信息

Zeineh Michael M, Palomero-Gallagher Nicola, Axer Markus, Gräßel David, Goubran Maged, Wree Andreas, Woods Roger, Amunts Katrin, Zilles Karl

机构信息

Department of Radiology, Stanford University, Lucas Center for Imaging, Stanford, CA 94305, USA.

Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.

出版信息

Cereb Cortex. 2017 Mar 1;27(3):1779-1794. doi: 10.1093/cercor/bhw010.

Abstract

While hippocampal connectivity is essential to normal memory function, our knowledge of human hippocampal circuitry is largely inferred from animal studies. Using polarized light microscopy at 1.3 µm resolution, we have directly visualized the 3D course of key medial temporal pathways in 3 ex vivo human hemispheres and 2 ex vivo vervet monkey hemispheres. The multiple components of the perforant path system were clearly identified: Superficial sheets of fibers emanating from the entorhinal cortex project to the presubiculum and parasubiculum, intermixed transverse and longitudinal angular bundle fibers perforate the subiculum and then project to the cornu ammonis (CA) fields and dentate molecular layer, and a significant alvear component runs from the angular bundle to the CA fields. From the hilus, mossy fibers localize to regions of high kainate receptor density, and the endfolial pathway, mostly investigated in humans, merges with the Schaffer collaterals. This work defines human hippocampal pathways underlying mnemonic function at an unprecedented resolution.

摘要

虽然海马体连接对于正常记忆功能至关重要,但我们对人类海马体神经回路的了解很大程度上是从动物研究中推断出来的。我们使用分辨率为1.3 µm的偏振光显微镜,直接观察了3个离体人类半球和2个离体黑长尾猴半球中关键内侧颞叶通路的三维走向。穿通通路系统的多个组成部分清晰可辨:发自内嗅皮质的浅层纤维束投射至前下托和下托旁区,交织的横向和纵向角束纤维穿过下托,然后投射至海马角(CA)区和齿状分子层,并且有一个重要的齿状回纤维成分从角束延伸至CA区。从齿状回门部发出的苔藓纤维定位于高红藻氨酸受体密度区域,而主要在人类中研究的内箔通路与谢弗侧支汇合。这项工作以前所未有的分辨率明确了人类记忆功能背后的海马体通路。

相似文献

3
Mapping mesoscale connectivity within the human hippocampus.
Neuroimage. 2023 Nov 15;282:120406. doi: 10.1016/j.neuroimage.2023.120406. Epub 2023 Oct 11.
4
5
Mnemonic discrimination relates to perforant path integrity: An ultra-high resolution diffusion tensor imaging study.
Neurobiol Learn Mem. 2016 Mar;129:107-12. doi: 10.1016/j.nlm.2015.06.014. Epub 2015 Jul 4.
6
The commissural connections of the monkey hippocampal formation.
J Comp Neurol. 1984 Apr 10;224(3):307-36. doi: 10.1002/cne.902240302.
7
Ultra-high resolution in-vivo 7.0T structural imaging of the human hippocampus reveals the endfolial pathway.
Neuroimage. 2015 May 15;112:1-6. doi: 10.1016/j.neuroimage.2015.02.029. Epub 2015 Feb 19.
8
Activation of perforant path neurons to field CA1 by hippocampal projections.
Hippocampus. 2003;13(2):235-49. doi: 10.1002/hipo.10074.
9
Contacts between medial and lateral perforant pathway fibers and parvalbumin expressing neurons in the subiculum of the rat.
Neuroscience. 2008 Oct 15;156(3):653-61. doi: 10.1016/j.neuroscience.2008.08.023. Epub 2008 Aug 22.
10
Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex.
J Comp Neurol. 1985 Jun 22;236(4):504-22. doi: 10.1002/cne.902360407.

引用本文的文献

1
Precise MRI-histology coregistration of paraffin-embedded tissue with blockface imaging.
Imaging Neurosci (Camb). 2025 Aug 8;3. doi: 10.1162/IMAG.a.106. eCollection 2025.
2
Self-supervised representation learning for nerve fiber distribution patterns in 3D-PLI.
Imaging Neurosci (Camb). 2024 Nov 7;2. doi: 10.1162/imag_a_00351. eCollection 2024.
3
Hippocampal architecture viewed through the eyes of methodological development.
Anat Sci Int. 2025 Aug 5. doi: 10.1007/s12565-025-00878-7.
4
Early life stress impairs hippocampal subfield myelination.
Commun Biol. 2025 May 22;8(1):785. doi: 10.1038/s42003-025-08165-x.
5
Cognitive-and lifestyle-related microstructural variation in the ageing human hippocampus.
Brain Struct Funct. 2025 Apr 23;230(4):53. doi: 10.1007/s00429-025-02908-6.
6
Quantification of perforant path fibers for early detection of Alzheimer's disease.
Alzheimers Dement. 2025 Apr;21(4):e70142. doi: 10.1002/alz.70142.
8
The developing hippocampus: Microstructural evolution through childhood and adolescence.
bioRxiv. 2024 Aug 19:2024.08.19.608590. doi: 10.1101/2024.08.19.608590.
9
Permittivity tensor imaging: modular label-free imaging of 3D dry mass and 3D orientation at high resolution.
Nat Methods. 2024 Jul;21(7):1257-1274. doi: 10.1038/s41592-024-02291-w. Epub 2024 Jun 18.
10
Diffusion MRI of the Hippocampus.
J Neurosci. 2024 Jun 5;44(23):e1705232024. doi: 10.1523/JNEUROSCI.1705-23.2024.

本文引用的文献

1
A multiscale approach for the reconstruction of the fiber architecture of the human brain based on 3D-PLI.
Front Neuroanat. 2015 Sep 3;9:118. doi: 10.3389/fnana.2015.00118. eCollection 2015.
3
Ultra-high resolution in-vivo 7.0T structural imaging of the human hippocampus reveals the endfolial pathway.
Neuroimage. 2015 May 15;112:1-6. doi: 10.1016/j.neuroimage.2015.02.029. Epub 2015 Feb 19.
4
Understanding fiber mixture by simulation in 3D Polarized Light Imaging.
Neuroimage. 2015 May 1;111:464-75. doi: 10.1016/j.neuroimage.2015.02.020. Epub 2015 Feb 17.
5
Global brain atrophy but not hippocampal atrophy is related to type 2 diabetes.
J Neurol Sci. 2014 Sep 15;344(1-2):32-6. doi: 10.1016/j.jns.2014.06.008. Epub 2014 Jun 14.
6
Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI?
Diabetes. 2014 Jul;63(7):2244-52. doi: 10.2337/db14-0348. Epub 2014 Jun 15.
10
Hippocampal CA1 apical neuropil atrophy and memory performance in Alzheimer's disease.
Neuroimage. 2012 Oct 15;63(1):194-202. doi: 10.1016/j.neuroimage.2012.06.048. Epub 2012 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验