Suppr超能文献

用于车辆品牌和型号识别的局部平铺深度网络。

Local Tiled Deep Networks for Recognition of Vehicle Make and Model.

作者信息

Gao Yongbin, Lee Hyo Jong

机构信息

Division of Computer Science and Engineering, Chonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju 54596, Korea.

Center for Advanced Image and Information Technology, Chonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju 54596, Korea.

出版信息

Sensors (Basel). 2016 Feb 11;16(2):226. doi: 10.3390/s16020226.

Abstract

Vehicle analysis involves license-plate recognition (LPR), vehicle-type classification (VTC), and vehicle make and model recognition (MMR). Among these tasks, MMR plays an important complementary role in respect to LPR. In this paper, we propose a novel framework for MMR using local tiled deep networks. The frontal views of vehicle images are first extracted and fed into the local tiled deep networks for training and testing. A local tiled convolutional neural network (LTCNN) is proposed to alter the weight sharing scheme of CNN with local tiled structure. The LTCNN unties the weights of adjacent units and then ties the units k steps from each other within a local map. This architecture provides the translational, rotational, and scale invariance as well as locality. In addition, to further deal with the colour and illumination variation, we applied the histogram oriented gradient (HOG) to the frontal view of images prior to the LTCNN. The experimental results show that our LTCNN framework achieved a 98% accuracy rate in terms of vehicle MMR.

摘要

车辆分析涉及车牌识别(LPR)、车辆类型分类(VTC)以及车辆品牌和型号识别(MMR)。在这些任务中,MMR相对于LPR起着重要的补充作用。在本文中,我们提出了一种使用局部平铺深度网络进行MMR的新颖框架。首先提取车辆图像的正视图,并将其输入到局部平铺深度网络中进行训练和测试。提出了一种局部平铺卷积神经网络(LTCNN),以改变具有局部平铺结构的CNN的权重共享方案。LTCNN解开相邻单元的权重,然后在局部映射中使彼此相距k步的单元权重绑定在一起。这种架构提供了平移、旋转和尺度不变性以及局部性。此外,为了进一步处理颜色和光照变化,我们在LTCNN之前将直方图定向梯度(HOG)应用于图像的正视图。实验结果表明,我们的LTCNN框架在车辆MMR方面达到了98%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/051a/4801602/eae17086fb99/sensors-16-00226-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验