Department of Computer Science and Engineering, Sejong University, Seoul 143-747(05006), Korea.
Sensors (Basel). 2021 Jun 16;21(12):4140. doi: 10.3390/s21124140.
With the rapid rise of private vehicles around the world, License Plate Recognition (LPR) plays a vital role in supporting the government to manage vehicles effectively. However, an introduction of new types of license plate (LP) or slight changes in the LP format can break previous LPR systems, as they fail to recognize the LP. Moreover, the LPR system is extremely sensitive to the conditions of the surrounding environment. Thus, this paper introduces a novel deep learning-based Korean LPR system that can effectively deal with existing challenges. The main contributions of this study include (1) a robust LPR system with the integration of three pre-processing techniques (defogging, low-light enhancement, and super-resolution) that can effectively recognize the LP under various conditions, (2) the establishment of two original Korean LPR approaches for different scenarios, including whole license plate recognition (W-LPR) and single-character license plate recognition (SC-LPR), and (3) the introduction of two Korean LPR datasets (synthetic data and real data) involving a new type of LP introduced by the Korean government. Through several experiments, the proposed LPR framework achieved the highest recognition accuracy of 98.94%.
随着世界各地私人车辆的快速增加,车牌识别(LPR)在支持政府有效管理车辆方面发挥着至关重要的作用。然而,新型车牌(LP)的引入或 LP 格式的细微变化都可能使之前的 LPR 系统失效,因为它们无法识别 LP。此外,LPR 系统对周围环境条件极其敏感。因此,本文提出了一种基于深度学习的新型韩国 LPR 系统,可有效应对现有挑战。本研究的主要贡献包括:(1)集成了三种预处理技术(去雾、低光增强和超分辨率)的强大 LPR 系统,可在各种条件下有效识别 LP;(2)为不同场景建立了两种原始的韩国 LPR 方法,包括整板车牌识别(W-LPR)和单字符车牌识别(SC-LPR);(3)引入了两个韩国 LPR 数据集(合成数据和真实数据),其中包含韩国政府引入的新型 LP。通过多项实验,所提出的 LPR 框架实现了 98.94%的最高识别准确率。