Hubai András G, Kun Ádám
Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary; MTA-ELTE-MTM Ecology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary; Parmenides Centre for the Conceptual Foundation of Science, Kirchplatz 1, D-82049 Munich/Pullach, Germany.
J Theor Biol. 2016 Sep 21;405:29-35. doi: 10.1016/j.jtbi.2016.02.007. Epub 2016 Feb 11.
There is still no general solution to Eigen׳s Paradox, the chicken-or-egg problem of the origin of life: neither accurate copying, nor long genomes could have evolved without one another being established beforehand. But an array of small, individually replicating genes might offer a workaround, provided that multilevel selection assists the survival of the ensemble. There are two key difficulties that such a system has to overcome: the non-synchronous replication of genes, and their random assortment into daughter cells (the units of higher-level selection) upon fission. Here we find, using the Stochastic Corrector Model framework, that a large number (τ≥90) of genes can coexist. Furthermore, the system can tolerate about 10% replication rate asymmetry (competition) among the genes. On this basis, we put forward a plausible (and testable!) scenario for how novel genes could have been incorporated into early living systems: a route to complex metabolism.
对于艾根悖论(生命起源的先有鸡还是先有蛋的问题),目前仍没有通用的解决方案:如果没有事先建立起对方,精确复制和长基因组都不可能进化。但是,如果多级选择有助于整体的生存,那么一系列小型的、独立复制的基因可能提供一种解决方法。这样一个系统必须克服两个关键困难:基因的非同步复制,以及它们在分裂时随机分配到子细胞(更高层次选择的单位)中。在这里,我们使用随机校正模型框架发现,大量(τ≥90)基因可以共存。此外,该系统能够容忍基因之间约10%的复制速率不对称(竞争)。在此基础上,我们提出了一个关于新基因如何被纳入早期生命系统的合理(且可检验!)设想:一条通往复杂代谢的途径。