Suppr超能文献

原细胞中连接和基因组扩张的进化:染色体的起源。

Evolution of linkage and genome expansion in protocells: The origin of chromosomes.

机构信息

Institute of Evolution, Centre for Ecological Research, Tihany, Hungary.

Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary.

出版信息

PLoS Genet. 2020 Oct 29;16(10):e1009155. doi: 10.1371/journal.pgen.1009155. eCollection 2020 Oct.

Abstract

Chromosomes are likely to have assembled from unlinked genes in early evolution. Genetic linkage reduces the assortment load and intragenomic conflict in reproducing protocell models to the extent that chromosomes can go to fixation even if chromosomes suffer from a replicative disadvantage, relative to unlinked genes, proportional to their length. Here we numerically show that chromosomes spread within protocells even if recurrent deleterious mutations affecting replicating genes (as ribozymes) are considered. Dosage effect selects for optimal genomic composition within protocells that carries over to the genic composition of emerging chromosomes. Lacking an accurate segregation mechanism, protocells continue to benefit from the stochastic corrector principle (group selection of early replicators), but now at the chromosome level. A remarkable feature of this process is the appearance of multigene families (in optimal genic proportions) on chromosomes. An added benefit of chromosome formation is an increase in the selectively maintainable genome size (number of different genes), primarily due to the marked reduction of the assortment load. The establishment of chromosomes is under strong positive selection in protocells harboring unlinked genes. The error threshold of replication is raised to higher genome size by linkage due to the fact that deleterious mutations affecting protocells metabolism (hence fitness) show antagonistic (diminishing return) epistasis. This result strengthens the established benefit conferred by chromosomes on protocells allowing for the fixation of highly specific and efficient enzymes.

摘要

染色体可能是在早期进化中从非连锁基因组装而来的。遗传连锁在一定程度上降低了复制原细胞模型中的基因组合负担和基因组内冲突,以至于染色体即使相对于非连锁基因具有复制劣势,也能固定下来,其比例与其长度成正比。在这里,我们通过数值模拟表明,即使考虑到影响复制基因(如核酶)的反复有害突变,染色体也会在原细胞内传播。剂量效应选择了最优的基因组组成,这种组成会延续到新兴染色体的基因组成中。由于缺乏准确的分离机制,原细胞继续受益于随机校正原则(早期复制子的群体选择),但现在是在染色体水平上。这一过程的一个显著特征是多基因家族(在最优的基因比例中)出现在染色体上。染色体形成的一个额外好处是增加了可选择性维持的基因组大小(不同基因的数量),主要是由于基因组合负担的显著减少。在含有非连锁基因的原细胞中,染色体的形成受到强烈的正选择。由于影响原细胞代谢(因此适应度)的有害突变表现出拮抗(收益递减)上位性,连锁将复制的错误阈值提高到更高的基因组大小。这一结果加强了染色体赋予原细胞的既定优势,允许高度特异性和高效酶的固定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ce7/7665907/25c9ea824f30/pgen.1009155.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验