Chakraborty Kalyan, Kanemitsu Shigeru, Tsukada Haruo
Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad, UP 211019 India.
Graduate School of Advanced Technology, Kinki University, Iizuka, Fukuoka 820-8555 Japan.
Springerplus. 2016 Feb 1;5:99. doi: 10.1186/s40064-016-1732-5. eCollection 2016.
The incomplete gamma function expansion for the perturbed Epstein zeta function is known as Ewald expansion. In this paper we state a special case of the main formula in Kanemitsu and Tsukada (Contributions to the theory of zeta-functions: the modular relation supremacy. World Scientific, Singapore, 2014) whose specifications will give Ewald expansions in the H-function hierarchy. An Ewald expansion for us are given by [Formula: see text] or its variants. We shall treat the case of zeta functions which satisfy functional equation with a single gamma factor which includes both the Riemann as well as the Hecke type of functional equations and unify them in Theorem 2. This result reveals the H-function hierarchy: the confluent hypergeometric function series entailing the Ewald expansions. Further we show that some special cases of this theorem entails various well known results, e.g., Bochner-Chandrasekharan theorem, Atkinson-Berndt theorem etc.
扰动的爱泼斯坦zeta函数的不完全伽马函数展开被称为埃瓦尔德展开。在本文中,我们陈述了金光和冢田(《zeta函数理论的贡献:模关系至上》。世界科学出版社,新加坡,2014年)主要公式的一个特殊情况,其具体说明将给出H函数层次中的埃瓦尔德展开。对我们来说,一个埃瓦尔德展开由[公式:见正文]或其变体给出。我们将处理满足带有单个伽马因子的函数方程的zeta函数的情况,其中包括黎曼以及赫克类型的函数方程,并在定理2中统一它们。这个结果揭示了H函数层次:包含埃瓦尔德展开的合流超几何函数级数。此外,我们表明该定理的一些特殊情况蕴含各种著名的结果,例如博赫纳 - 钱德拉塞卡兰定理、阿特金森 - 伯恩特定理等。