Anthony Tony Cox Louis, Popken Douglas A, Kaplan A Michael, Plunkett Laura M, Becker Richard A
Cox Associates, 503 Franklin St., Denver, CO, 80218, USA.
Cox Associates, 503 Franklin St., Denver, CO, 80218, USA.
Regul Toxicol Pharmacol. 2016 Jun;77:54-64. doi: 10.1016/j.yrtph.2016.02.005. Epub 2016 Feb 13.
A recent research article by the National Center for Computational Toxicology (NCCT) (Kleinstreuer et al., 2013), indicated that high throughput screening (HTS) data from assays linked to hallmarks and presumed pathways of carcinogenesis could be used to predict classification of pesticides as either (a) possible, probable or likely rodent carcinogens; or (b) not likely carcinogens or evidence of non-carcinogenicity. Using independently developed software to validate the computational results, we replicated the majority of the results reported. We also found that the prediction model correlating cancer pathway bioactivity scores with in vivo carcinogenic effects in rodents was not robust. A change of classification of a single chemical in the test set was capable of changing the overall study conclusion about the statistical significance of the correlation. Furthermore, in the subset of pesticide compounds used in model validation, the accuracy of prediction was no better than chance for about three quarters of the chemicals (those with fewer than 7 positive outcomes in HTS assays representing the 11 histopathological endpoints used in model development), suggesting that the prediction model was not adequate to predict cancer hazard for most of these chemicals. Although the utility of the model for humans is also unclear because a number of the rodent responses modeled (e.g., mouse liver tumors, rat thyroid tumors, rat testicular tumors, etc.) are not considered biologically relevant to human responses, the data examined imply the need for further research with HTS assays and improved models, which might help to predict classifications of in vivo carcinogenic responses in rodents for the pesticide considered, and thus reduce the need for testing in laboratory animals.
美国国家计算毒理学中心(NCCT)近期发表的一篇研究文章(Kleinstreuer等人,2013年)指出,来自与致癌特征和假定致癌途径相关检测的高通量筛选(HTS)数据,可用于预测农药的分类,即(a)可能、很可能或极有可能的啮齿动物致癌物;或(b)不太可能是致癌物或具有非致癌性的证据。我们使用自主开发的软件来验证计算结果,重现了所报告的大部分结果。我们还发现,将癌症途径生物活性评分与啮齿动物体内致癌作用相关联的预测模型并不稳健。测试集中单一化学品分类的改变能够改变关于相关性统计显著性的整体研究结论。此外,在模型验证中使用的农药化合物子集中,约四分之三的化学品(那些在代表模型开发中使用的11个组织病理学终点的HTS检测中阳性结果少于7个的化学品)预测准确性并不比随机猜测好,这表明该预测模型不足以预测这些化学品中大多数的癌症风险。尽管该模型对人类的实用性也不清楚,因为所模拟的一些啮齿动物反应(如小鼠肝肿瘤、大鼠甲状腺肿瘤、大鼠睾丸肿瘤等)在生物学上被认为与人类反应无关,但所审查的数据表明需要对HTS检测和改进模型进行进一步研究,这可能有助于预测所考虑农药在啮齿动物体内的致癌反应分类,从而减少在实验动物中进行测试的需求。