Zhang Chuanchao, Wang Jiguang, Zhang Chao, Liu Juan, Xu Dong, Chen Luonan
School of Computer, Wuhan University, Wuhan 430072, China.
Mol Biosyst. 2016 Apr;12(4):1232-40. doi: 10.1039/c5mb00782h. Epub 2016 Feb 16.
A major challenge of systems biology is to capture the rewiring of biological functions (e.g. signaling pathways) in a molecular network. To address this problem, we proposed a novel computational framework, namely network stratification analysis (NetSA), to stratify the whole biological network into various function-specific network layers corresponding to particular functions (e.g. KEGG pathways), which transform the network analysis from the gene level to the functional level by integrating expression data, the gene/protein network and gene ontology information altogether. The application of NetSA in yeast and its comparison with a traditional network-partition both suggest that NetSA can more effectively reveal functional implications of network rewiring and extract significant phenotype-related biological processes. Furthermore, for time-series or stage-wise data, the function-specific network layer obtained by NetSA is also shown to be able to characterize the disease progression in a dynamic manner. In particular, when applying NetSA to hepatocellular carcinoma and type 1 diabetes, we can derive functional spectra regarding the progression of the disease, and capture active biological functions (i.e. active pathways) in different disease stages. The additional comparison between NetSA and SPIA illustrates again that NetSA could discover more complete biological functions during disease progression. Overall, NetSA provides a general framework to stratify a network into various layers of function-specific sub-networks, which can not only analyze a biological network on the functional level but also investigate gene rewiring patterns in biological processes.
系统生物学的一个主要挑战是在分子网络中捕捉生物功能(如信号通路)的重新布线。为了解决这个问题,我们提出了一种新颖的计算框架,即网络分层分析(NetSA),将整个生物网络分层为与特定功能(如KEGG通路)相对应的各种功能特异性网络层,通过整合表达数据、基因/蛋白质网络和基因本体信息,将网络分析从基因水平转变到功能水平。NetSA在酵母中的应用及其与传统网络划分的比较均表明,NetSA能够更有效地揭示网络重新布线的功能含义,并提取与显著表型相关的生物学过程。此外,对于时间序列或阶段数据,NetSA获得的功能特异性网络层也能够以动态方式表征疾病进展。特别是,将NetSA应用于肝细胞癌和1型糖尿病时,我们可以得出关于疾病进展的功能谱,并捕捉不同疾病阶段的活跃生物学功能(即活跃通路)。NetSA与SPIA之间的额外比较再次表明,NetSA能够在疾病进展过程中发现更完整的生物学功能。总体而言,NetSA提供了一个将网络分层为各种功能特异性子网层的通用框架,不仅可以在功能水平上分析生物网络,还可以研究生物过程中的基因重新布线模式。