Suppr超能文献

氯离子/氢离子交换体ClC-ec1中阴离子差异结合和质子偶联的分子基础

Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl(-)/H(+) Exchanger ClC-ec1.

作者信息

Jiang Tao, Han Wei, Maduke Merritt, Tajkhorshid Emad

机构信息

Department of Biochemistry, Center for Biophysics and Computational Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Champaign, Illinois 61801, United States.

Department of Molecular and Cellular Physiology, Stanford University School of Medicine , Stanford, California 94305-5207, United States.

出版信息

J Am Chem Soc. 2016 Mar 9;138(9):3066-75. doi: 10.1021/jacs.5b12062. Epub 2016 Feb 26.

Abstract

Cl–/H+ transporters of the CLC superfamily form a ubiquitous class of membrane proteins that catalyze stoichiometrically coupled exchange of Cl– and H+ across biological membranes. CLC transporters exchange H+ for halides and certain polyatomic anions, but exclude cations, F–, and larger physiological anions, such as PO43– and SO42–. Despite comparable transport rates of different anions, the H+ coupling in CLC transporters varies significantly depending on the chemical nature of the transported anion. Although the molecular mechanism of exchange remains unknown, studies on bacterial ClC-ec1 transporter revealed that Cl– binding to the central anion-binding site (Scen) is crucial for the anion-coupled H+ transport. Here, we show that Cl–, F–, NO3–, and SCN– display distinct binding coordinations at the Scen site and are hydrated in different manners. Consistent with the observation of differential bindings, ClC-ec1 exhibits markedly variable ability to support the formation of the transient water wires, which are necessary to support the connection of the two H+ transfer sites (Gluin and Gluex), in the presence of different anions. While continuous water wires are frequently observed in the presence of physiologically transported Cl–, binding of F– or NO3– leads to the formation of pseudo-water-wires that are substantially different from the wires formed with Cl–. Binding of SCN–, however, eliminates the water wires altogether. These findings provide structural details of anion binding in ClC-ec1 and reveal a putative atomic-level mechanism for the decoupling of H+ transport to the transport of anions other than Cl–.

摘要

CLC超家族的Cl⁻/H⁺转运体构成了一类普遍存在的膜蛋白,可催化Cl⁻和H⁺以化学计量耦合的方式跨生物膜进行交换。CLC转运体将H⁺与卤化物和某些多原子阴离子进行交换,但排除阳离子、F⁻以及较大的生理阴离子,如PO₄³⁻和SO₄²⁻。尽管不同阴离子的转运速率相当,但CLC转运体中H⁺的耦合根据所转运阴离子的化学性质有显著差异。虽然交换的分子机制尚不清楚,但对细菌ClC-ec1转运体的研究表明,Cl⁻与中央阴离子结合位点(Scen)的结合对于阴离子耦合的H⁺转运至关重要。在这里,我们表明Cl⁻、F⁻、NO₃⁻和SCN⁻在Scen位点表现出不同的结合配位,并且以不同方式水合。与差异结合的观察结果一致,在存在不同阴离子的情况下,ClC-ec1支持形成瞬时水线的能力明显不同,而瞬时水线是连接两个H⁺转移位点(Gluin和Gluex)所必需的。在生理转运的Cl⁻存在时经常观察到连续的水线,而F⁻或NO₃⁻的结合导致形成与Cl⁻形成的水线有很大不同的假水线。然而,SCN⁻的结合完全消除了水线。这些发现提供了ClC-ec1中阴离子结合的结构细节,并揭示了一种推测的原子水平机制,用于将H⁺转运与除Cl⁻以外的阴离子转运解耦。

相似文献

1
Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl(-)/H(+) Exchanger ClC-ec1.
J Am Chem Soc. 2016 Mar 9;138(9):3066-75. doi: 10.1021/jacs.5b12062. Epub 2016 Feb 26.
2
Water access points and hydration pathways in CLC H+/Cl- transporters.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1819-24. doi: 10.1073/pnas.1317890111. Epub 2013 Dec 30.
3
Modulating the Chemical Transport Properties of a Transmembrane Antiporter via Alternative Anion Flux.
J Am Chem Soc. 2018 Dec 5;140(48):16535-16543. doi: 10.1021/jacs.8b07614. Epub 2018 Nov 27.
4
Uncoupling of a CLC Cl-/H+ exchange transporter by polyatomic anions.
J Mol Biol. 2006 Sep 29;362(4):682-90. doi: 10.1016/j.jmb.2006.07.006. Epub 2006 Aug 14.
5
Mutation of external glutamate residue reveals a new intermediate transport state and anion binding site in a CLC Cl/H antiporter.
Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17345-17354. doi: 10.1073/pnas.1901822116. Epub 2019 Aug 13.
6
Probing the conformation of a conserved glutamic acid within the Cl pathway of a CLC H/Cl exchanger.
J Gen Physiol. 2017 Apr 3;149(4):523-529. doi: 10.1085/jgp.201611682. Epub 2017 Feb 28.
7
Fluoride-dependent interruption of the transport cycle of a CLC Cl-/H+ antiporter.
Nat Chem Biol. 2013 Nov;9(11):721-5. doi: 10.1038/nchembio.1336. Epub 2013 Sep 15.
9
Multiscale Simulations Reveal Key Aspects of the Proton Transport Mechanism in the ClC-ec1 Antiporter.
Biophys J. 2016 Mar 29;110(6):1334-45. doi: 10.1016/j.bpj.2016.02.014.
10
Multiscale Kinetic Modeling Reveals an Ensemble of Cl/H Exchange Pathways in ClC-ec1 Antiporter.
J Am Chem Soc. 2018 Feb 7;140(5):1793-1804. doi: 10.1021/jacs.7b11463. Epub 2018 Jan 30.

引用本文的文献

1
Molecular mechanism of exchange coupling in CLC chloride/proton antiporters.
bioRxiv. 2025 May 9:2025.05.08.652968. doi: 10.1101/2025.05.08.652968.
2
Membrane-bound model of the ternary complex between factor VIIa/tissue factor and factor X.
Blood Adv. 2025 Feb 25;9(4):729-740. doi: 10.1182/bloodadvances.2024014845.
3
Water, Protons, and the Gating of Voltage-Gated Potassium Channels.
Membranes (Basel). 2024 Jan 29;14(2):37. doi: 10.3390/membranes14020037.
4
Fluoride Transport and Inhibition Across CLC Transporters.
Handb Exp Pharmacol. 2024;283:81-100. doi: 10.1007/164_2022_593.
5
Hydroxy Groups Enhance [2]Rotaxane Anion Binding Selectivity.
Chemistry. 2022 May 16;28(28):e202200389. doi: 10.1002/chem.202200389. Epub 2022 Apr 5.
6
A quantitative paradigm for water-assisted proton transport through proteins and other confined spaces.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2113141118.
7
Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins.
Membranes (Basel). 2021 Sep 3;11(9):685. doi: 10.3390/membranes11090685.
8
A solid-supported membrane electrophysiology assay for efficient characterization of ion-coupled transport.
J Biol Chem. 2021 Oct;297(4):101220. doi: 10.1016/j.jbc.2021.101220. Epub 2021 Sep 23.
10
Specific PIP binding promotes calcium activation of TMEM16A chloride channels.
Commun Biol. 2021 Feb 26;4(1):259. doi: 10.1038/s42003-021-01782-2.

本文引用的文献

2
DFTB3 Parametrization for Copper: The Importance of Orbital Angular Momentum Dependence of Hubbard Parameters.
J Chem Theory Comput. 2015 Sep 8;11(9):4205-19. doi: 10.1021/acs.jctc.5b00600. Epub 2015 Aug 24.
3
Microsecond Molecular Simulations Reveal a Transient Proton Pathway in the Calcium Pump.
J Am Chem Soc. 2015 Jun 10;137(22):7055-8. doi: 10.1021/jacs.5b03814. Epub 2015 Jun 2.
4
Molecular simulation of water and hydration effects in different environments: challenges and developments for DFTB based models.
J Phys Chem B. 2014 Sep 25;118(38):11007-27. doi: 10.1021/jp503372v. Epub 2014 Sep 16.
5
F-/Cl- selectivity in CLCF-type F-/H+ antiporters.
J Gen Physiol. 2014 Aug;144(2):129-36. doi: 10.1085/jgp.201411225.
6
Water access points and hydration pathways in CLC H+/Cl- transporters.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1819-24. doi: 10.1073/pnas.1317890111. Epub 2013 Dec 30.
7
Fluoride-dependent interruption of the transport cycle of a CLC Cl-/H+ antiporter.
Nat Chem Biol. 2013 Nov;9(11):721-5. doi: 10.1038/nchembio.1336. Epub 2013 Sep 15.
8
Cell biology and physiology of CLC chloride channels and transporters.
Compr Physiol. 2012 Jul;2(3):1701-44. doi: 10.1002/cphy.c110038.
9
Fluoride resistance and transport by riboswitch-controlled CLC antiporters.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15289-94. doi: 10.1073/pnas.1210896109. Epub 2012 Sep 4.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验