Suppr超能文献

多尺度模拟揭示了ClC-ec1反向转运体中质子传输机制的关键方面。

Multiscale Simulations Reveal Key Aspects of the Proton Transport Mechanism in the ClC-ec1 Antiporter.

作者信息

Lee Sangyun, Swanson Jessica M J, Voth Gregory A

机构信息

Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago, Chicago, Illinois.

Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago, Chicago, Illinois.

出版信息

Biophys J. 2016 Mar 29;110(6):1334-45. doi: 10.1016/j.bpj.2016.02.014.

Abstract

Multiscale reactive molecular dynamics simulations are used to study proton transport through the central region of ClC-ec1, a widely studied ClC transporter that enables the stoichiometric exchange of 2 Cl(-) ions for 1 proton (H(+)). It has long been known that both Cl(-) and proton transport occur through partially congruent pathways, and that their exchange is strictly coupled. However, the nature of this coupling and the mechanism of antiporting remain topics of debate. Here multiscale simulations have been used to characterize proton transport between E203 (Glu(in)) and E148 (Glu(ex)), the internal and external intermediate proton binding sites, respectively. Free energy profiles are presented, explicitly accounting for the binding of Cl(-) along the central pathway, the dynamically coupled hydration changes of the central region, and conformational changes of Glu(in) and Glu(ex). We find that proton transport between Glu(in) and Glu(ex) is possible in both the presence and absence of Cl(-) in the central binding site, although it is facilitated by the anion presence. These results support the notion that the requisite coupling between Cl(-) and proton transport occurs elsewhere (e.g., during proton uptake or release). In addition, proton transport is explored in the E203K mutant, which maintains proton permeation despite the substitution of a basic residue for Glu(in). This collection of calculations provides for the first time, to our knowledge, a detailed picture of the proton transport mechanism in the central region of ClC-ec1 at a molecular level.

摘要

多尺度反应分子动力学模拟被用于研究质子通过ClC-ec1中心区域的传输,ClC-ec1是一种被广泛研究的ClC转运蛋白,它能实现2个Cl⁻离子与1个质子(H⁺)的化学计量交换。长期以来,人们都知道Cl⁻和质子的传输是通过部分重叠的途径进行的,并且它们的交换是严格耦合的。然而,这种耦合的本质以及反向转运的机制仍然是争论的话题。在这里,多尺度模拟被用于表征分别位于内部和外部的中间质子结合位点E203(Glu(in))和E148(Glu(ex))之间的质子传输。给出了自由能分布,明确考虑了沿中心途径Cl⁻的结合、中心区域动态耦合的水合变化以及Glu(in)和Glu(ex)的构象变化。我们发现,无论中心结合位点是否存在Cl⁻,Glu(in)和Glu(ex)之间的质子传输都是可能的,尽管阴离子的存在促进了这种传输。这些结果支持了Cl⁻和质子传输之间必要的耦合发生在其他地方(例如,在质子摄取或释放过程中)的观点。此外,还对E203K突变体中的质子传输进行了探索,尽管Glu(in)被一个碱性残基取代,但该突变体仍保持质子渗透。据我们所知,这一系列计算首次在分子水平上提供了ClC-ec1中心区域质子传输机制的详细图景。

相似文献

3
The Origin of Coupled Chloride and Proton Transport in a Cl/H Antiporter.氯离子/质子协同转运体的起源。
J Am Chem Soc. 2016 Nov 16;138(45):14923-14930. doi: 10.1021/jacs.6b06683. Epub 2016 Nov 8.
4
Water access points and hydration pathways in CLC H+/Cl- transporters.CLC H+/Cl− 转运体中的水通道和水合途径。
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1819-24. doi: 10.1073/pnas.1317890111. Epub 2013 Dec 30.

引用本文的文献

4
Structural basis of pH-dependent activation in a CLC transporter.一种 CLC 转运蛋白的 pH 依赖性激活的结构基础。
Nat Struct Mol Biol. 2024 Apr;31(4):644-656. doi: 10.1038/s41594-023-01210-5. Epub 2024 Jan 26.
9
Multiscale kinetic analysis of proteins.蛋白质的多尺度动力学分析。
Curr Opin Struct Biol. 2022 Feb;72:169-175. doi: 10.1016/j.sbi.2021.11.005. Epub 2021 Dec 16.

本文引用的文献

6
Structure and gating of CLC channels and exchangers.氯离子通道和交换体的结构与门控
J Physiol. 2015 Sep 15;593(18):4129-38. doi: 10.1113/JP270575. Epub 2015 Jul 28.
7
Hydrated Excess Protons Can Create Their Own Water Wires.水合过量质子可形成自身的水线。
J Phys Chem B. 2015 Jul 23;119(29):9212-8. doi: 10.1021/jp5095118. Epub 2014 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验