Suppr超能文献

希瓦氏菌属中甲酸代谢产生质子动力并在没有电子受体的情况下阻止生长。

Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor.

作者信息

Kane Aunica L, Brutinel Evan D, Joo Heena, Maysonet Rebecca, VanDrisse Chelsey M, Kotloski Nicholas J, Gralnick Jeffrey A

机构信息

BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA.

BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA Department of Microbiology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA

出版信息

J Bacteriol. 2016 Mar 31;198(8):1337-46. doi: 10.1128/JB.00927-15. Print 2016 Apr.

Abstract

UNLABELLED

Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms inS. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation inS. oneidensis.

IMPORTANCE

Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of Shewanella oneidensis Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of S. oneidensis are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation.

摘要

未标记

奥奈达希瓦氏菌MR-1菌株是一种兼性厌氧菌,由于其能够利用多种末端电子受体,因此在氧化还原分层的环境中生长旺盛。相反,奥奈达希瓦氏菌利用的电子供体则较为有限,包括初级发酵产物,如乳酸、丙酮酸、甲酸和氢气。奥奈达希瓦氏菌中乳酸、丙酮酸和氢气的代谢此前已有描述,但关于甲酸氧化在这些细菌的生态生理学中的作用知之甚少。在以丙酮酸或高于丙酮酸水平进入代谢的碳源上进行厌氧生长期间,奥奈达希瓦氏菌通过丙酮酸甲酸裂解酶产生甲酸,并且其基因组包含三个基因簇,预测可编码三个完整的甲酸脱氢酶复合物。为了确定每个复合物对甲酸代谢的贡献,构建了缺失一个、两个或所有三个注释的甲酸脱氢酶基因簇的菌株,并检测了它们在多种碳源上的生长速率和产量。在此,我们报告甲酸氧化通过产生质子动力对奥奈达希瓦氏菌的生长速率和产量均有贡献。外源甲酸还极大地加速了在N-乙酰葡糖胺上的生长,N-乙酰葡糖胺是奥奈达希瓦氏菌在厌氧条件下通常利用非常缓慢的一种碳源。令人惊讶的是,缺失所有三个甲酸脱氢酶基因簇使得奥奈达希瓦氏菌在没有末端电子受体的情况下能够利用丙酮酸生长,这是这些细菌中从未观察到的一种生长模式。我们的结果表明,甲酸氧化是奥奈达希瓦氏菌在厌氧条件下进行能量守恒的一种基本策略。

重要性

希瓦氏菌属因其能够呼吸细胞外末端电子受体(如不溶性铁氧化物和电极)而在生物技术应用中引起了人们的兴趣。虽然在研究细胞外电子传递的蛋白质方面已经付出了很多努力,但通过有机碳源氧化产生的电子如何进入该途径仍未得到充分研究。在此,我们量化了甲酸氧化在奥奈达希瓦氏菌厌氧生理学中的作用。甲酸氧化通过产生质子动力对多种碳源的生长速率和产量均有贡献。深入了解奥奈达希瓦氏菌的厌氧代谢对于我们利用和改造这种生物体以用于生物能源、生物催化和生物修复应用的能力非常重要。

相似文献

1
Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor.
J Bacteriol. 2016 Mar 31;198(8):1337-46. doi: 10.1128/JB.00927-15. Print 2016 Apr.
2
Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions.
Appl Environ Microbiol. 2011 Dec;77(23):8234-40. doi: 10.1128/AEM.05382-11. Epub 2011 Sep 30.
3
Hydrogen production driven by formate oxidation in Shewanella oneidensis MR-1.
Appl Microbiol Biotechnol. 2020 Jun;104(12):5579-5591. doi: 10.1007/s00253-020-10608-w. Epub 2020 Apr 17.
4
Roles of d-Lactate Dehydrogenases in the Anaerobic Growth of MR-1 on Sugars.
Appl Environ Microbiol. 2019 Jan 23;85(3). doi: 10.1128/AEM.02668-18. Print 2019 Feb 1.
6
Hydrogen metabolism in Shewanella oneidensis MR-1.
Appl Environ Microbiol. 2007 Feb;73(4):1153-65. doi: 10.1128/AEM.01588-06. Epub 2006 Dec 22.
7
Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth.
Appl Environ Microbiol. 2018 May 31;84(12). doi: 10.1128/AEM.00415-18. Print 2018 Jun 15.
8
Kinetics of Intracellular Electron Generation in MR-1.
Anal Chem. 2019 Nov 19;91(22):14401-14406. doi: 10.1021/acs.analchem.9b02900. Epub 2019 Oct 30.
9
The operon encodes an essential and modular electron transfer pathway for extracellular iodate reduction by MR-1.
Microbiol Spectr. 2024 Aug 6;12(8):e0051224. doi: 10.1128/spectrum.00512-24. Epub 2024 Jun 25.
10
Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis.
Appl Environ Microbiol. 2019 Jan 23;85(3). doi: 10.1128/AEM.02115-18. Print 2019 Feb 1.

引用本文的文献

1
Crp and Arc system directly regulate the transcription of NADH dehydrogenase genes in nitrate and nitrite respiration.
Microbiol Spectr. 2025 Jul;13(7):e0332424. doi: 10.1128/spectrum.03324-24. Epub 2025 May 16.
2
A small number of point mutations confer formate tolerance in .
Appl Environ Microbiol. 2025 May 21;91(5):e0196824. doi: 10.1128/aem.01968-24. Epub 2025 Apr 10.
3
Proton motive force generated by microbial rhodopsin promotes extracellular electron transfer.
Synth Syst Biotechnol. 2025 Jan 7;10(2):410-420. doi: 10.1016/j.synbio.2025.01.001. eCollection 2025 Jun.
4
A novel bacterial sulfite dehydrogenase that requires three -type cytochromes for electron transfer.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0110823. doi: 10.1128/aem.01108-23. Epub 2023 Sep 21.
5
Supplementation with Amino Acid Sources Facilitates Fermentative Growth of Shewanella oneidensis MR-1 in Defined Media.
Appl Environ Microbiol. 2023 Jul 26;89(7):e0086823. doi: 10.1128/aem.00868-23. Epub 2023 Jun 27.
6
Unraveling Biohydrogen Production and Sugar Utilization Systems in the Electricigen BBL25.
J Microbiol Biotechnol. 2023 May 28;33(5):687-697. doi: 10.4014/jmb.2212.12024. Epub 2023 Feb 15.
7
Cysteine-Mediated Extracellular Electron Transfer of Lysinibacillus varians GY32.
Microbiol Spectr. 2022 Dec 21;10(6):e0279822. doi: 10.1128/spectrum.02798-22. Epub 2022 Nov 1.
8
sp. T2.3D-1.1 a Novel Microorganism Sustaining the Iron Cycle in the Deep Subsurface of the Iberian Pyrite Belt.
Microorganisms. 2022 Aug 6;10(8):1585. doi: 10.3390/microorganisms10081585.
9
Biotechnological synthesis of Pd-based nanoparticle catalysts.
Nanoscale Adv. 2021 Dec 21;4(3):654-679. doi: 10.1039/d1na00686j. eCollection 2022 Feb 1.
10
Survival of the first rather than the fittest in a Shewanella electrode biofilm.
Commun Biol. 2021 May 6;4(1):536. doi: 10.1038/s42003-021-02040-1.

本文引用的文献

1
CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP.
Evolution. 1985 Jul;39(4):783-791. doi: 10.1111/j.1558-5646.1985.tb00420.x.
2
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.
Mol Biol Evol. 2013 Dec;30(12):2725-9. doi: 10.1093/molbev/mst197. Epub 2013 Oct 16.
3
The roles of CymA in support of the respiratory flexibility of Shewanella oneidensis MR-1.
Biochem Soc Trans. 2012 Dec 1;40(6):1217-21. doi: 10.1042/BST20120150.
4
Preferential utilization of D-lactate by Shewanella oneidensis.
Appl Environ Microbiol. 2012 Dec;78(23):8474-6. doi: 10.1128/AEM.02183-12. Epub 2012 Sep 21.
6
Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1.
Biosystems. 2012 Feb;107(2):120-8. doi: 10.1016/j.biosystems.2011.10.003. Epub 2011 Oct 17.
7
Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions.
Appl Environ Microbiol. 2011 Dec;77(23):8234-40. doi: 10.1128/AEM.05382-11. Epub 2011 Sep 30.
8
Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain.
Appl Microbiol Biotechnol. 2010 Oct;88(3):637-43. doi: 10.1007/s00253-010-2820-z. Epub 2010 Aug 13.
9
Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1.
Mol Microbiol. 2010 Aug;77(4):995-1008. doi: 10.1111/j.1365-2958.2010.07266.x. Epub 2010 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验