Kane Aunica L, Brutinel Evan D, Joo Heena, Maysonet Rebecca, VanDrisse Chelsey M, Kotloski Nicholas J, Gralnick Jeffrey A
BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA.
BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA Department of Microbiology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
J Bacteriol. 2016 Mar 31;198(8):1337-46. doi: 10.1128/JB.00927-15. Print 2016 Apr.
Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms inS. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation inS. oneidensis.
Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology of Shewanella oneidensis Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism of S. oneidensis are important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation.
奥奈达希瓦氏菌MR-1菌株是一种兼性厌氧菌,由于其能够利用多种末端电子受体,因此在氧化还原分层的环境中生长旺盛。相反,奥奈达希瓦氏菌利用的电子供体则较为有限,包括初级发酵产物,如乳酸、丙酮酸、甲酸和氢气。奥奈达希瓦氏菌中乳酸、丙酮酸和氢气的代谢此前已有描述,但关于甲酸氧化在这些细菌的生态生理学中的作用知之甚少。在以丙酮酸或高于丙酮酸水平进入代谢的碳源上进行厌氧生长期间,奥奈达希瓦氏菌通过丙酮酸甲酸裂解酶产生甲酸,并且其基因组包含三个基因簇,预测可编码三个完整的甲酸脱氢酶复合物。为了确定每个复合物对甲酸代谢的贡献,构建了缺失一个、两个或所有三个注释的甲酸脱氢酶基因簇的菌株,并检测了它们在多种碳源上的生长速率和产量。在此,我们报告甲酸氧化通过产生质子动力对奥奈达希瓦氏菌的生长速率和产量均有贡献。外源甲酸还极大地加速了在N-乙酰葡糖胺上的生长,N-乙酰葡糖胺是奥奈达希瓦氏菌在厌氧条件下通常利用非常缓慢的一种碳源。令人惊讶的是,缺失所有三个甲酸脱氢酶基因簇使得奥奈达希瓦氏菌在没有末端电子受体的情况下能够利用丙酮酸生长,这是这些细菌中从未观察到的一种生长模式。我们的结果表明,甲酸氧化是奥奈达希瓦氏菌在厌氧条件下进行能量守恒的一种基本策略。
希瓦氏菌属因其能够呼吸细胞外末端电子受体(如不溶性铁氧化物和电极)而在生物技术应用中引起了人们的兴趣。虽然在研究细胞外电子传递的蛋白质方面已经付出了很多努力,但通过有机碳源氧化产生的电子如何进入该途径仍未得到充分研究。在此,我们量化了甲酸氧化在奥奈达希瓦氏菌厌氧生理学中的作用。甲酸氧化通过产生质子动力对多种碳源的生长速率和产量均有贡献。深入了解奥奈达希瓦氏菌的厌氧代谢对于我们利用和改造这种生物体以用于生物能源、生物催化和生物修复应用的能力非常重要。