Vahidi Siavash, Bi Yumin, Dunn Stanley D, Konermann Lars
Department of Chemistry, University of Western Ontario, London, ON, Canada N6A 5B7;
Department of Biochemistry, University of Western Ontario, London, ON, Canada N6A 5C1.
Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2412-7. doi: 10.1073/pnas.1520464113. Epub 2016 Feb 16.
FoF1 is a membrane-bound molecular motor that uses proton-motive force (PMF) to drive the synthesis of ATP from ADP and Pi. Reverse operation generates PMF via ATP hydrolysis. Catalysis in either direction involves rotation of the γε shaft that connects the α3β3 head and the membrane-anchored cn ring. X-ray crystallography and other techniques have provided insights into the structure and function of FoF1 subcomplexes. However, interrogating the conformational dynamics of intact membrane-bound FoF1 during rotational catalysis has proven to be difficult. Here, we use hydrogen/deuterium exchange mass spectrometry to probe the inner workings of FoF1 in its natural membrane-bound state. A pronounced destabilization of the γ C-terminal helix during hydrolysis-driven rotation was observed. This behavior is attributed to torsional stress in γ, arising from γ⋅⋅⋅α3β3 interactions that cause resistance during γ rotation within the apical bearing. Intriguingly, we find that destabilization of γ occurs only when FoF1 operates against a PMF-induced torque; the effect disappears when PMF is eliminated by an uncoupler. This behavior resembles the properties of automotive engines, where bearings inflict greater forces on the crankshaft when operated under load than during idling.
F₀F₁是一种膜结合分子马达,它利用质子动力(PMF)驱动由二磷酸腺苷(ADP)和无机磷酸(Pi)合成三磷酸腺苷(ATP)。反向运行则通过ATP水解产生PMF。两个方向的催化作用都涉及连接α₃β₃头部和膜锚定cₙ环的γε轴的旋转。X射线晶体学和其他技术为F₀F₁亚复合体的结构和功能提供了见解。然而,事实证明,研究完整的膜结合F₀F₁在旋转催化过程中的构象动力学是困难的。在这里,我们使用氢/氘交换质谱法来探究处于天然膜结合状态的F₀F₁的内部运作机制。在水解驱动的旋转过程中,观察到γ C末端螺旋明显不稳定。这种行为归因于γ中的扭转应力,它源于γ⋅⋅⋅α₃β₃相互作用,这种相互作用在γ于顶端轴承内旋转时产生阻力。有趣的是,我们发现只有当F₀F₁逆着PMF诱导的扭矩运行时,γ才会出现不稳定;当通过解偶联剂消除PMF时,这种效应就会消失。这种行为类似于汽车发动机的特性,即发动机在负载下运行时轴承对曲轴施加的力比空转时更大。