Suppr超能文献

关于超声定量剪切波成像中与系统相关的不确定性和偏差来源

On System-Dependent Sources of Uncertainty and Bias in Ultrasonic Quantitative Shear-Wave Imaging.

作者信息

Deng Yufeng, Rouze Ned C, Palmeri Mark L, Nightingale Kathryn R

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Mar;63(3):381-93. doi: 10.1109/TUFFC.2016.2524260. Epub 2016 Feb 8.

Abstract

Ultrasonic quantitative shear-wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work discusses eight sources of uncertainty and bias arising from ultrasound system-dependent parameters in ultrasound shear-wave speed (SWS) measurements. Each of the eight sources of error is discussed in the context of a linear, isotropic, elastic, homogeneous medium, combining previously reported analyses with Field II simulations, full-wave 2-D acoustic propagation simulations, and experimental studies. Errors arising from both spatial and temporal sources lead to errors in SWS measurements. Arrival time estimation noise, speckle bias, hardware fluctuations, and phase aberration cause uncertainties (variance) in SWS measurements, while pulse repetition frequency (PRF) and beamforming errors, as well as coupling medium sound speed mismatch, cause biases in SWS measurements (accuracy errors). Calibration of the sources of bias is an important step in the development of shear-wave imaging systems. In a well-calibrated system, where the sources of bias are minimized, and averaging over a region of interest (ROI) is employed to reduce the sources of uncertainty, an SWS error can be expected.

摘要

在过去十年中,已经开发出超声定量剪切波成像方法,通过测量声辐射力激发后传播的剪切波速度来估计组织弹性。这项工作讨论了超声剪切波速度(SWS)测量中与超声系统相关参数产生的八种不确定性和偏差来源。在线性、各向同性、弹性、均匀介质的背景下,结合先前报道的分析以及Field II模拟、全波二维声传播模拟和实验研究,对这八种误差来源进行了讨论。空间和时间来源产生的误差都会导致SWS测量出现误差。到达时间估计噪声、散斑偏差、硬件波动和相位畸变会导致SWS测量的不确定性(方差),而脉冲重复频率(PRF)和波束形成误差以及耦合介质声速失配会导致SWS测量的偏差(精度误差)。偏差来源的校准是剪切波成像系统开发中的重要一步。在一个经过良好校准的系统中,偏差来源被最小化,并且采用在感兴趣区域(ROI)上进行平均以减少不确定性来源,可以预期会出现SWS误差。

相似文献

1
On System-Dependent Sources of Uncertainty and Bias in Ultrasonic Quantitative Shear-Wave Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Mar;63(3):381-93. doi: 10.1109/TUFFC.2016.2524260. Epub 2016 Feb 8.
2
Evaluating the Improvement in Shear Wave Speed Image Quality Using Multidimensional Directional Filters in the Presence of Reflection Artifacts.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Aug;63(8):1049-1063. doi: 10.1109/TUFFC.2016.2558662. Epub 2016 Apr 27.
3
Ultrasonic Shear Wave Elasticity Imaging Sequencing and Data Processing Using a Verasonics Research Scanner.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):164-176. doi: 10.1109/TUFFC.2016.2614944.
4
On the precision of time-of-flight shear wave speed estimation in homogeneous soft solids: initial results using a matrix array transducer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Apr;60(4):758-70. doi: 10.1109/TUFFC.2013.2624.
6
Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Apr;62(4):647-62. doi: 10.1109/TUFFC.2014.006805.
8
Improving the robustness of time-of-flight based shear wave speed reconstruction methods using RANSAC in human liver in vivo.
Ultrasound Med Biol. 2010 May;36(5):802-13. doi: 10.1016/j.ultrasmedbio.2010.02.007. Epub 2010 Apr 9.
10
Sources of Variability in Shear Wave Speed and Dispersion Quantification with Ultrasound Elastography: A Phantom Study.
Ultrasound Med Biol. 2021 Dec;47(12):3529-3542. doi: 10.1016/j.ultrasmedbio.2021.08.013. Epub 2021 Sep 20.

引用本文的文献

3
A review of physical and engineering factors potentially affecting shear wave elastography.
J Med Ultrason (2001). 2021 Oct;48(4):403-414. doi: 10.1007/s10396-021-01127-w. Epub 2021 Aug 28.
4
Main Uncertainties in the RF Ultrasound Scanning Simulation of the Standard Ultrasound Phantoms.
Sensors (Basel). 2021 Jun 28;21(13):4420. doi: 10.3390/s21134420.
5
Viscoelastic parameter estimation using simulated shear wave motion and convolutional neural networks.
Comput Biol Med. 2021 Jun;133:104382. doi: 10.1016/j.compbiomed.2021.104382. Epub 2021 Apr 11.
6
8
Evaluation of Reconstruction Parameters for 2-D Comb-Push Ultrasound Shear Wave Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Feb;66(2):254-263. doi: 10.1109/TUFFC.2018.2884348. Epub 2018 Nov 30.
9
Plane-Wave Imaging Improves Single-Track Location Shear Wave Elasticity Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Aug;65(8):1402-1414. doi: 10.1109/TUFFC.2018.2842468. Epub 2018 Jun 1.
10
Fourier-Domain Shift Matching: A Robust Time-of-Flight Approach for Shear Wave Speed Estimation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 May;65(5):729-740. doi: 10.1109/TUFFC.2018.2811738.

本文引用的文献

2
Shear wave arrival time estimates correlate with local speckle pattern.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Dec;62(12):2054-67. doi: 10.1109/TUFFC.2015.007171.
3
Elastography Assessment of Liver Fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement.
Radiology. 2015 Sep;276(3):845-61. doi: 10.1148/radiol.2015150619. Epub 2015 Jun 16.
4
WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology.
Ultrasound Med Biol. 2015 May;41(5):1126-47. doi: 10.1016/j.ultrasmedbio.2015.03.009. Epub 2015 Mar 21.
5
WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: liver.
Ultrasound Med Biol. 2015 May;41(5):1161-79. doi: 10.1016/j.ultrasmedbio.2015.03.007. Epub 2015 Mar 20.
6
WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: breast.
Ultrasound Med Biol. 2015 May;41(5):1148-60. doi: 10.1016/j.ultrasmedbio.2015.03.008. Epub 2015 Mar 18.
7
Romanian national guidelines and practical recommendations on liver elastography.
Med Ultrason. 2014 Jun;16(2):123-38. doi: 10.11152/mu.201.3.2066.162.is1sb2.
8
Harmonic tracking of acoustic radiation force-induced displacements.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Nov;60(11):2347-58. doi: 10.1109/TUFFC.2013.6644738.
9
Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall.
Phys Med Biol. 2013 Apr 21;58(8):2675-95. doi: 10.1088/0031-9155/58/8/2675. Epub 2013 Apr 3.
10
Single tracking location methods suppress speckle noise in shear wave velocity estimation.
Ultrason Imaging. 2013 Apr;35(2):109-25. doi: 10.1177/0161734612474159.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验