Suppr超能文献

近端小管细胞对糖化白蛋白清除增加的机制。

Mechanism of increased clearance of glycated albumin by proximal tubule cells.

作者信息

Wagner Mark C, Myslinski Jered, Pratap Shiv, Flores Brittany, Rhodes George, Campos-Bilderback Silvia B, Sandoval Ruben M, Kumar Sudhanshu, Patel Monika, Molitoris Bruce A

机构信息

Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and.

The Council of Scientific and Industrial Research Institute of Microbial Technology, Chandigarh, India.

出版信息

Am J Physiol Renal Physiol. 2016 May 1;310(10):F1089-102. doi: 10.1152/ajprenal.00605.2015. Epub 2016 Feb 17.

Abstract

Serum albumin is the most abundant plasma protein and has a long half-life due to neonatal Fc receptor (FcRn)-mediated transcytosis by many cell types, including proximal tubule cells of the kidney. Albumin also interacts with, and is modified by, many small and large molecules. Therefore, the focus of the present study was to address the impact of specific known biological albumin modifications on albumin-FcRn binding and cellular handling. Binding at pH 6.0 and 7.4 was performed since FcRn binds albumin strongly at acidic pH and releases it after transcytosis at physiological pH. Equilibrium dissociation constants were measured using microscale thermophoresis. Since studies have shown that glycated albumin is excreted in the urine at a higher rate than unmodified albumin, we studied glucose and methylgloxal modified albumins (21 days). All had reduced affinity to FcRn at pH 6.0, suggesting these albumins would not be returned to the circulation via the transcytotic pathway. To address why modified albumin has reduced affinity, we analyzed the structure of the modified albumins using small-angle X-ray scattering. This analysis showed significant structural changes occurring to albumin with glycation, particularly in the FcRn-binding region, which could explain the reduced affinity to FcRn. These results offer an explanation for enhanced proximal tubule-mediated sorting and clearance of abnormal albumins.

摘要

血清白蛋白是最丰富的血浆蛋白,由于新生儿Fc受体(FcRn)介导的多种细胞类型(包括肾近端小管细胞)的转胞吞作用,其半衰期较长。白蛋白还与许多小分子和大分子相互作用并被其修饰。因此,本研究的重点是探讨特定已知生物白蛋白修饰对白蛋白-FcRn结合及细胞处理的影响。由于FcRn在酸性pH下强烈结合白蛋白并在生理pH下转胞吞后释放,因此在pH 6.0和7.4下进行结合实验。使用微量热泳测定平衡解离常数。由于研究表明糖化白蛋白比未修饰的白蛋白以更高的速率从尿液中排出,我们研究了葡萄糖和甲基乙二醛修饰的白蛋白(21天)。所有修饰的白蛋白在pH 6.0时对FcRn的亲和力均降低,这表明这些白蛋白不会通过转胞吞途径返回循环。为了探究修饰后的白蛋白亲和力降低的原因,我们使用小角X射线散射分析了修饰白蛋白的结构。该分析表明,糖化作用使白蛋白发生了显著的结构变化,尤其是在FcRn结合区域,这可以解释其对FcRn亲和力降低的原因。这些结果为近端小管介导的异常白蛋白分选和清除增强提供了解释。

相似文献

1
Mechanism of increased clearance of glycated albumin by proximal tubule cells.
Am J Physiol Renal Physiol. 2016 May 1;310(10):F1089-102. doi: 10.1152/ajprenal.00605.2015. Epub 2016 Feb 17.
2
Mechanism of how carbamylation reduces albumin binding to FcRn contributing to increased vascular clearance.
Am J Physiol Renal Physiol. 2021 Jan 1;320(1):F114-F129. doi: 10.1152/ajprenal.00428.2020. Epub 2020 Dec 7.
3
Autophagy gene regulates albumin transcytosis in renal tubule epithelial cells.
Am J Physiol Renal Physiol. 2021 Nov 1;321(5):F572-F586. doi: 10.1152/ajprenal.00172.2021. Epub 2021 Sep 20.
4
Albumin binding to FcRn: distinct from the FcRn-IgG interaction.
Biochemistry. 2006 Apr 18;45(15):4983-90. doi: 10.1021/bi052628y.
5
Generating a Podocyte-Specific Neonatal F Receptor (FcRn) Knockout Mouse.
Methods Mol Biol. 2021;2224:123-132. doi: 10.1007/978-1-0716-1008-4_9.
7
Renal FcRn reclaims albumin but facilitates elimination of IgG.
J Am Soc Nephrol. 2009 Sep;20(9):1941-52. doi: 10.1681/ASN.2008090976. Epub 2009 Aug 6.
8
The proximal tubule and albuminuria: really!
J Am Soc Nephrol. 2014 Mar;25(3):443-53. doi: 10.1681/ASN.2013090950. Epub 2014 Jan 9.
9
Differential trafficking of albumin and IgG facilitated by the neonatal Fc receptor in podocytes in vitro and in vivo.
PLoS One. 2019 Feb 27;14(2):e0209732. doi: 10.1371/journal.pone.0209732. eCollection 2019.
10
Protein glycation: effects upon protein recognition by the proximal tubule.
Life Sci. 1992;50(4):281-6. doi: 10.1016/0024-3205(92)90335-m.

引用本文的文献

1
3
Endogenous markers of kidney function and renal drug clearance processes of filtration, secretion, and reabsorption.
Curr Opin Toxicol. 2022 Sep;31. doi: 10.1016/j.cotox.2022.03.005. Epub 2022 Apr 20.
4
Defining the Intravital Renal Disposition of Fluorescence-Quenched Exenatide.
Mol Pharm. 2023 Feb 6;20(2):987-996. doi: 10.1021/acs.molpharmaceut.2c00671. Epub 2023 Jan 10.
6
SAXS Analysis and Characterization of Anticancer Activity of PNP-UDP Family Protein from Putranjiva roxburghii.
Protein J. 2022 Jun;41(3):381-393. doi: 10.1007/s10930-022-10060-x. Epub 2022 Jun 8.
7
Intravital Multiphoton Microscopy as a Tool for Studying Renal Physiology, Pathophysiology and Therapeutics.
Front Physiol. 2022 Mar 24;13:827280. doi: 10.3389/fphys.2022.827280. eCollection 2022.
8
Albumin uptake and processing by the proximal tubule: physiological, pathological, and therapeutic implications.
Physiol Rev. 2022 Oct 1;102(4):1625-1667. doi: 10.1152/physrev.00014.2021. Epub 2022 Apr 4.
9
The Glomerular Endothelium Restricts Albumin Filtration.
Front Med (Lausanne). 2021 Nov 29;8:766689. doi: 10.3389/fmed.2021.766689. eCollection 2021.

本文引用的文献

1
FcRn: The Architect Behind the Immune and Nonimmune Functions of IgG and Albumin.
J Immunol. 2015 May 15;194(10):4595-603. doi: 10.4049/jimmunol.1403014.
3
Unraveling the Interaction between FcRn and Albumin: Opportunities for Design of Albumin-Based Therapeutics.
Front Immunol. 2015 Jan 26;5:682. doi: 10.3389/fimmu.2014.00682. eCollection 2014.
4
New developments in the program package for small-angle scattering data analysis.
J Appl Crystallogr. 2012 Mar 15;45(Pt 2):342-350. doi: 10.1107/S0021889812007662. eCollection 2012 Apr 1.
5
Interaction with both domain I and III of albumin is required for optimal pH-dependent binding to the neonatal Fc receptor (FcRn).
J Biol Chem. 2014 Dec 12;289(50):34583-94. doi: 10.1074/jbc.M114.587675. Epub 2014 Oct 24.
7
Glycated serum albumin: a potential disease marker and an intermediate index of diabetes control.
Diabetes Metab Syndr. 2014 Oct-Dec;8(4):245-51. doi: 10.1016/j.dsx.2014.09.017. Epub 2014 Oct 11.
8
Unraveling the mysteries of serum albumin-more than just a serum protein.
Front Physiol. 2014 Aug 12;5:299. doi: 10.3389/fphys.2014.00299. eCollection 2014.
9
Progression of renal injury toward interstitial inflammation and glomerular sclerosis is dependent on abnormal protein filtration.
Nephrol Dial Transplant. 2015 May;30(5):706-12. doi: 10.1093/ndt/gfu261. Epub 2014 Aug 2.
10
Characterization and screening of IgG binding to the neonatal Fc receptor.
MAbs. 2014 Jul-Aug;6(4):928-42. doi: 10.4161/mabs.28744. Epub 2014 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验