IEEE Trans Cybern. 2017 Feb;47(2):461-472. doi: 10.1109/TCYB.2016.2519450. Epub 2016 Feb 16.
Growing trend of the dynamic multiobjective optimization research in the evolutionary computation community has increased the need for challenging and conceptually simple benchmark test suite to assess the optimization performance of an algorithm. This paper proposes a new dynamic multiobjective benchmark test suite which contains a number of component functions with clearly defined properties to assess the diversity maintenance and tracking ability of a dynamic multiobjective evolutionary algorithm (MOEA). Time-varying fitness landscape modality, tradeoff connectedness, and tradeoff degeneracy are considered as these properties rarely exist in the current benchmark test instances. Cross-problem comparative study is presented to analyze the sensitivity of a given algorithm to certain fitness landscape properties. To demonstrate the use of the proposed benchmark test suite, three evolutionary multiobjective algorithms, namely nondominated sorting genetic algorithm, decomposition-based MOEA, and recently proposed Kalman-filter-based prediction approach, are analyzed and compared. Besides, two problem-specific performance metrics are designed to assess the convergence and diversity performances, respectively. By applying the proposed test suite and performance metrics, microscopic performance details of these algorithms are uncovered to provide insightful guidance to the algorithm designer.
进化计算领域中动态多目标优化研究的发展趋势,增加了对具有挑战性和概念简单的基准测试套件的需求,以评估算法的优化性能。本文提出了一种新的动态多目标基准测试套件,其中包含了一些具有明确定义属性的组成函数,以评估动态多目标进化算法(MOEA)的多样性保持和跟踪能力。时变适应度景观模态、权衡连接性和权衡简并性被认为是这些属性,它们在当前的基准测试实例中很少存在。进行了跨问题的比较研究,以分析给定算法对特定适应度景观属性的敏感性。为了演示所提出的基准测试套件的使用,分析和比较了三种进化多目标算法,即非支配排序遗传算法、基于分解的 MOEA 和最近提出的基于卡尔曼滤波的预测方法。此外,设计了两个问题特定的性能指标,分别用于评估收敛性和多样性性能。通过应用所提出的测试套件和性能指标,揭示了这些算法的微观性能细节,为算法设计者提供了有见地的指导。