Vestner Jochen, de Revel Gilles, Krieger-Weber Sibylle, Rauhut Doris, du Toit Maret, de Villiers André
Université de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie, 33882 Villenave d'Ornon, France; INRA, ISVV, USC 1366 Œnologie, 33882 Villenave d'Ornon, France; Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366 Geisenheim, Germany.
Université de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie, 33882 Villenave d'Ornon, France; INRA, ISVV, USC 1366 Œnologie, 33882 Villenave d'Ornon, France.
Anal Chim Acta. 2016 Mar 10;911:42-58. doi: 10.1016/j.aca.2016.01.020. Epub 2016 Jan 22.
In contrast to targeted analysis of volatile compounds, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition. Although several non-targeted approaches have been developed, there's still a demand for automated data processing tools, especially for complex multi-way data such as chromatographic data obtained from multichannel detectors. This work was therefore aimed at developing a data processing procedure for gas chromatography mass spectrometry (GC-MS) data obtained from non-targeted analysis of volatile compounds. The developed approach uses basic matrix manipulation of segmented GC-MS chromatograms and PARAFAC multi-way modelling. The approach takes retention time shifts and peak shape deformations between samples into account and can be done with the freely available N-way toolbox for MATLAB. A demonstration of the new fingerprinting approach is presented using an artificial GC-MS data set and an experimental full-scan GC-MS data set obtained for a set of experimental wines.
与挥发性化合物的靶向分析不同,非靶向方法会考虑已知和未知化合物的信息,本质上更全面,能更全面地呈现样品组成。尽管已经开发了几种非靶向方法,但仍需要自动化数据处理工具,特别是对于复杂的多向数据,如从多通道检测器获得的色谱数据。因此,这项工作旨在为挥发性化合物非靶向分析获得的气相色谱 - 质谱(GC-MS)数据开发一种数据处理程序。所开发的方法使用分段GC-MS色谱图的基本矩阵操作和PARAFAC多向建模。该方法考虑了样品之间的保留时间偏移和峰形变形,并且可以使用免费的MATLAB N向工具箱来完成。使用人工GC-MS数据集和一组实验葡萄酒获得的实验全扫描GC-MS数据集展示了新的指纹识别方法。