Suppr超能文献

用于非靶向气相色谱-质谱数据分析的自动化监督学习流程

Automated supervised learning pipeline for non-targeted GC-MS data analysis.

作者信息

Sirén Kimmo, Fischer Ulrich, Vestner Jochen

机构信息

Institute for Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, D-67435, Neustadt, Germany.

Department of Chemistry, University of Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663, Kaiserslautern, Germany.

出版信息

Anal Chim Acta X. 2019 Jan 10;1:100005. doi: 10.1016/j.acax.2019.100005. eCollection 2019 Mar.

Abstract

Non-targeted analysis is nowadays applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. Conventional processing strategies for GC-MS data include baseline correction, feature detection, and retention time alignment before multivariate modeling. These techniques can be prone to errors and therefore time-consuming manual corrections are generally necessary. We introduce here a novel fully automated approach to non-targeted GC-MS data processing. This new approach avoids feature extraction and retention time alignment. Supervised machine learning on decomposed tensors of segmented chromatographic raw data signal is used to rank regions in the chromatograms contributing to differentiation between sample classes. The performance of this novel data analysis approach is demonstrated on three published datasets.

摘要

如今,非靶向分析已应用于分析化学的许多不同领域,如代谢组学、环境和食品分析。气相色谱 - 质谱(GC-MS)数据的传统处理策略包括在多变量建模之前进行基线校正、特征检测和保留时间校准。这些技术容易出错,因此通常需要耗时的人工校正。我们在此介绍一种用于非靶向GC-MS数据处理的全新全自动方法。这种新方法避免了特征提取和保留时间校准。对分段色谱原始数据信号的分解张量进行监督式机器学习,以对色谱图中有助于区分样品类别的区域进行排名。在三个已发表的数据集上展示了这种新颖数据分析方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4f/7587030/5cb5ad669970/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验