Suppr超能文献

β3肾上腺素能刺激可恢复一氧化氮/氧化还原平衡并增强高血糖状态下的内皮功能。

β3 Adrenergic Stimulation Restores Nitric Oxide/Redox Balance and Enhances Endothelial Function in Hyperglycemia.

作者信息

Karimi Galougahi Keyvan, Liu Chia-Chi, Garcia Alvaro, Gentile Carmine, Fry Natasha A, Hamilton Elisha J, Hawkins Clare L, Figtree Gemma A

机构信息

North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia University of Sydney Medical School Foundation, Sydney, Australia Columbia University Medical Center, New York, NY.

North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.

出版信息

J Am Heart Assoc. 2016 Feb 19;5(2):e002824. doi: 10.1161/JAHA.115.002824.

Abstract

BACKGROUND

Perturbed balance between NO and O2 (•-). (ie, NO/redox imbalance) is central in the pathobiology of diabetes-induced vascular dysfunction. We examined whether stimulation of β3 adrenergic receptors (β3 ARs), coupled to endothelial nitric oxide synthase (eNOS) activation, would re-establish NO/redox balance, relieve oxidative inhibition of the membrane proteins eNOS and Na(+)-K(+) (NK) pump, and improve vascular function in a new animal model of hyperglycemia.

METHODS AND RESULTS

We established hyperglycemia in male White New Zealand rabbits by infusion of S961, a competitive high-affinity peptide inhibitor of the insulin receptor. Hyperglycemia impaired endothelium-dependent vasorelaxation by "uncoupling" of eNOS via glutathionylation (eNOS-GSS) that was dependent on NADPH oxidase activity. Accordingly, NO levels were lower while O2 (•-) levels were higher in hyperglycemic rabbits. Infusion of the β3 AR agonist CL316243 (CL) decreased eNOS-GSS, reduced O2 (•-), restored NO levels, and improved endothelium-dependent relaxation. CL decreased hyperglycemia-induced NADPH oxidase activation as suggested by co-immunoprecipitation experiments, and it increased eNOS co-immunoprecipitation with glutaredoxin-1, which may reflect promotion of eNOS de-glutathionylation by CL. Moreover, CL reversed hyperglycemia-induced glutathionylation of the β1 NK pump subunit that causes NK pump inhibition, and improved K(+)-induced vasorelaxation that reflects enhancement in NK pump activity. Lastly, eNOS-GSS was higher in vessels of diabetic patients and was reduced by CL, suggesting potential significance of the experimental findings in human diabetes.

CONCLUSIONS

β3 AR activation restored NO/redox balance and improved endothelial function in hyperglycemia. β3 AR agonists may confer protection against diabetes-induced vascular dysfunction.

摘要

背景

一氧化氮(NO)与超氧阴离子(O2 (•-))之间的平衡紊乱(即NO/氧化还原失衡)是糖尿病诱导的血管功能障碍病理生物学的核心。我们研究了与内皮型一氧化氮合酶(eNOS)激活偶联的β3肾上腺素能受体(β3 ARs)刺激是否能重建NO/氧化还原平衡,缓解膜蛋白eNOS和钠钾(NK)泵的氧化抑制,并改善高血糖新动物模型的血管功能。

方法与结果

我们通过输注S961(一种胰岛素受体竞争性高亲和力肽抑制剂)使雄性新西兰白兔发生高血糖。高血糖通过依赖于NADPH氧化酶活性的谷胱甘肽化作用(eNOS-GSS)使eNOS“解偶联”,从而损害内皮依赖性血管舒张。因此,高血糖兔体内的NO水平较低而O2 (•-)水平较高。输注β3 AR激动剂CL316243(CL)可降低eNOS-GSS,减少O2 (•-),恢复NO水平,并改善内皮依赖性舒张。共免疫沉淀实验表明CL可降低高血糖诱导的NADPH氧化酶激活,并且它增加了eNOS与谷氧还蛋白-1的共免疫沉淀,这可能反映了CL对eNOS去谷胱甘肽化的促进作用。此外,CL逆转了高血糖诱导的导致NK泵抑制的β1 NK泵亚基的谷胱甘肽化,并改善了反映NK泵活性增强的钾诱导的血管舒张。最后,糖尿病患者血管中的eNOS-GSS较高,而CL可使其降低,这表明实验结果在人类糖尿病中具有潜在意义。

结论

β3 AR激活可恢复高血糖状态下的NO/氧化还原平衡并改善内皮功能。β3 AR激动剂可能对糖尿病诱导的血管功能障碍具有保护作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81a5/4802476/acfb6df57b50/JAH3-5-e002824-g001.jpg

相似文献

2
β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.
Am J Physiol Cell Physiol. 2015 Sep 1;309(5):C286-95. doi: 10.1152/ajpcell.00071.2015. Epub 2015 Jun 10.
7
Chronic NaHS treatment decreases oxidative stress and improves endothelial function in diabetic mice.
Diab Vasc Dis Res. 2017 May;14(3):246-253. doi: 10.1177/1479164117692766. Epub 2017 Feb 1.
8
Short-term type 1 diabetes alters the mechanism of endothelium-dependent relaxation in the rat carotid artery.
Am J Physiol Heart Circ Physiol. 2010 Aug;299(2):H502-11. doi: 10.1152/ajpheart.01197.2009. Epub 2010 Jun 11.
9
β(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification.
Circulation. 2010 Dec 21;122(25):2699-708. doi: 10.1161/CIRCULATIONAHA.110.964619. Epub 2010 Dec 6.

引用本文的文献

2
Improvement of Vascular Insulin Sensitivity by Ranolazine.
Int J Mol Sci. 2023 Aug 31;24(17):13532. doi: 10.3390/ijms241713532.
3
Valorization of Chicken Slaughterhouse Byproducts to Obtain Antihypertensive Peptides.
Nutrients. 2023 Jan 15;15(2):457. doi: 10.3390/nu15020457.
5
Endothelial cell dysfunction: Implications for the pathogenesis of peripheral artery disease.
Front Cardiovasc Med. 2022 Nov 16;9:1054576. doi: 10.3389/fcvm.2022.1054576. eCollection 2022.
6
Obesity and Endothelial Function.
Biomedicines. 2022 Jul 19;10(7):1745. doi: 10.3390/biomedicines10071745.
9
Adrenergic Receptor Stimulation Promotes Reperfusion in Ischemic Limbs in a Murine Diabetic Model.
Front Pharmacol. 2021 Apr 22;12:666334. doi: 10.3389/fphar.2021.666334. eCollection 2021.
10
The Beta3 Adrenergic Receptor in Healthy and Pathological Cardiovascular Tissues.
Cells. 2020 Dec 2;9(12):2584. doi: 10.3390/cells9122584.

本文引用的文献

2
Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition.
Am J Physiol Cell Physiol. 2015 Aug 15;309(4):C239-50. doi: 10.1152/ajpcell.00392.2014. Epub 2015 Jun 17.
3
β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.
Am J Physiol Cell Physiol. 2015 Sep 1;309(5):C286-95. doi: 10.1152/ajpcell.00071.2015. Epub 2015 Jun 10.
8
Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I.
Eur Heart J. 2013 Aug;34(31):2436-43. doi: 10.1093/eurheartj/eht149. Epub 2013 May 2.
9
Challenges in β(3)-Adrenoceptor Agonist Drug Development.
Ther Adv Endocrinol Metab. 2011 Apr;2(2):59-64. doi: 10.1177/2042018811398517.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验