Suppr超能文献

运行AutoDock Vina进行虚拟筛选的1001种方法。

1001 Ways to run AutoDock Vina for virtual screening.

作者信息

Jaghoori Mohammad Mahdi, Bleijlevens Boris, Olabarriaga Silvia D

机构信息

Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.

Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.

出版信息

J Comput Aided Mol Des. 2016 Mar;30(3):237-49. doi: 10.1007/s10822-016-9900-9. Epub 2016 Feb 20.

Abstract

Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

摘要

大规模计算技术已实现了高通量虚拟筛选,涉及数千到数百万种候选药物。然而,对于生化科学家而言,评估技术选择及其对运行此类大型实验的影响并非易事。除了具备分子对接工具本身的使用经验外,科学家还需要学习如何在高性能计算(HPC)基础设施上运行该工具,并了解所做选择的影响。在此,我们针对特定工具AutoDock Vina回顾此类注意事项,并使用实验数据来说明以下几点:(1)额外的并行化级别可提高多核机器上的虚拟筛选通量;(2)对于异构分布式计算系统上的可重复性而言,捕获随机种子虽有必要但并不充分;(3)通过分析影响每个配体执行时间的因素,包括活性扭转数、重原子数和穷举度,可以缩短配体库筛选的总时间。我们还说明了四种常见HPC基础设施(网格、Hadoop、小型集群和多核(云上的虚拟机))之间的差异。我们的分析表明,这些平台适用于不同规模的筛选实验。这些注意事项可为科学家在为未来的大型虚拟筛选实验选择最佳计算平台和设置时提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7bd/4801993/789338db84be/10822_2016_9900_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验