Suppr超能文献

速度与准确性:AutoDock Vina中不同盒子大小和详尽程度对配体构象准确性的影响

Speed vs Accuracy: Effect on Ligand Pose Accuracy of Varying Box Size and Exhaustiveness in AutoDock Vina.

作者信息

Agarwal Rupesh, Smith Jeremy C

机构信息

UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6309, USA.

Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, 14311 Cumberland Avenue, Knoxville, TN 37996-1939, USA.

出版信息

Mol Inform. 2023 Feb;42(2):e2200188. doi: 10.1002/minf.202200188. Epub 2022 Nov 11.

Abstract

Structure-based virtual high-throughput screening involves docking chemical libraries to targets of interest. A parameter pertinent to the accuracy of the resulting pose is the root mean square deviation (RMSD) from a known crystallographic structure, i. e., the 'docking power'. Here, using a popular algorithm, Autodock Vina, as a model program, we evaluate the effects of varying two common docking parameters: the box size (the size of docking search space) and the exhaustiveness of the global search (the number of independent runs starting from random ligand conformations) on the RMSD from the PDBbind v2017 refined dataset of experimental protein-ligand complexes. Although it is clear that exhaustiveness is an important parameter, there is wide variation in the values used, with variation between 1 and >100. We, therefore, evaluated a combination of cubic boxes of different sizes and five exhaustiveness values (1, 8, 25, 50, 75, 100) within the range of those commonly adopted. The results show that the default exhaustiveness value of 8 performs well overall for most box sizes. In contrast, for all box sizes, but particularly for large boxes, an exhaustiveness value of 1 led to significantly higher median RMSD (mRMSD) values. The docking power was slightly improved with an exhaustiveness of 25, but the mRMSD changes little with values higher than 25. Therefore, although low exhaustiveness is computationally faster, the results are more likely to be far from reality, and, conversely, values >25 led to little improvement at the expense of computational resources. Overall, we recommend users to use at least the default exhaustiveness value of 8 for virtual screening calculations.

摘要

基于结构的虚拟高通量筛选涉及将化学文库与感兴趣的靶点进行对接。与所得构象准确性相关的一个参数是与已知晶体结构的均方根偏差(RMSD),即“对接能力”。在此,我们使用一种流行的算法Autodock Vina作为模型程序,评估改变两个常见对接参数(盒子大小,即对接搜索空间的大小,以及全局搜索的详尽程度,即从随机配体构象开始的独立运行次数)对来自PDBbind v2017实验性蛋白质 - 配体复合物精炼数据集的RMSD的影响。虽然很明显详尽程度是一个重要参数,但所使用的值差异很大,范围在1到大于100之间。因此,我们在常用范围内评估了不同大小的立方盒子与五个详尽程度值(1、8、25、50、75、100)的组合。结果表明,对于大多数盒子大小,默认的详尽程度值8总体表现良好。相比之下,对于所有盒子大小,特别是大盒子,详尽程度值1导致中位数RMSD(mRMSD)值显著更高。详尽程度为25时对接能力略有提高,但mRMSD在高于25的值时变化不大。因此,虽然低详尽程度在计算上更快,但结果更可能远离实际情况,相反,大于25的值以计算资源为代价带来的改善很小。总体而言,我们建议用户在虚拟筛选计算中至少使用默认的详尽程度值8。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验