Kántor Orsolya, Mezey Szilvia, Adeghate Jennifer, Naumann Angela, Nitschke Roland, Énzsöly Anna, Szabó Arnold, Lukáts Ákos, Németh János, Somogyvári Zoltán, Völgyi Béla
Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1094, Hungary.
MTA-PTE NAP B Retinal Electrical Synapses Research Group, Pécs, H-7624, Hungary.
Cell Tissue Res. 2016 Jul;365(1):29-50. doi: 10.1007/s00441-016-2376-z. Epub 2016 Feb 22.
Ca(2+)-buffer proteins (CaBPs) modulate the temporal and spatial characteristics of transient intracellular Ca(2+)-concentration changes in neurons in order to fine-tune the strength and duration of the output signal. CaBPs have been used as neurochemical markers to identify and trace neurons of several brain loci including the mammalian retina. The CaBP content of retinal neurons, however, varies between species and, thus, the results inferred from animal models cannot be utilised directly by clinical ophthalmologists. Moreover, the shortage of well-preserved human samples greatly impedes human retina studies at the cellular and network level. Our purpose has therefore been to examine the distribution of major CaBPs, including calretinin, calbindin-D28, parvalbumin and the recently discovered secretagogin in exceptionally well-preserved human retinal samples. Based on a combination of immunohistochemistry, Neurolucida tracing and Lucifer yellow injections, we have established a database in which the CaBP marker composition can be defined for morphologically identified cell types of the human retina. Hence, we describe the full CaBP make-up for a number of human retinal neurons, including HII horizontal cells, AII amacrine cells, type-1 tyrosine-hydroxylase-expressing amacrine cells and other lesser known neurons. We have also found a number of unidentified cells whose morphology remains to be characterised. We present several examples of the colocalisation of two or three CaBPs with slightly different subcellular distributions in the same cell strongly suggesting a compartment-specific division of labour of Ca(2+)-buffering by CaBPs. Our work thus provides a neurochemical framework for future ophthalmological studies and renders new information concerning the cellular and subcellular distribution of CaBPs for experimental neuroscience.
钙离子缓冲蛋白(CaBPs)可调节神经元内瞬时钙离子浓度变化的时间和空间特性,从而精确调整输出信号的强度和持续时间。CaBPs已被用作神经化学标记物,以识别和追踪包括哺乳动物视网膜在内的多个脑区的神经元。然而,视网膜神经元中的CaBP含量因物种而异,因此临床眼科医生无法直接利用从动物模型推断出的结果。此外,保存完好的人类样本的短缺极大地阻碍了在细胞和网络水平上对人类视网膜的研究。因此,我们的目的是在保存异常完好的人类视网膜样本中,研究主要CaBPs的分布,包括钙视网膜蛋白、钙结合蛋白-D28、小白蛋白和最近发现的分泌粒蛋白。基于免疫组织化学、Neurolucida追踪和荧光黄注射的结合,我们建立了一个数据库,其中可以为人类视网膜形态学上已识别的细胞类型定义CaBP标记物组成。因此,我们描述了许多人类视网膜神经元的完整CaBP组成,包括HII水平细胞、AII无长突细胞、表达1型酪氨酸羟化酶的无长突细胞和其他鲜为人知的神经元。我们还发现了一些形态有待确定的未识别细胞。我们展示了几个例子,即在同一细胞中,两种或三种CaBPs具有略有不同的亚细胞分布的共定位,这强烈表明CaBPs在钙离子缓冲方面存在特定区室的分工。因此,我们的工作为未来的眼科研究提供了一个神经化学框架,并为实验神经科学提供了有关CaBPs细胞和亚细胞分布的新信息。