Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.
Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan.
Sci Rep. 2016 Feb 22;6:21867. doi: 10.1038/srep21867.
Graphene oxide (GO) is reduced by certain exoelectrogenic bacteria, but its effects on bacterial growth and metabolism are a controversial issue. This study aimed to determine whether GO functions as the terminal electron acceptor to allow specific growth of and electricity production by exoelectrogenic bacteria. Cultivation of environmental samples with GO and acetate as the sole substrate could specifically enrich exoelectrogenic bacteria with Geobacter species predominating (51-68% of the total populations). Interestingly, bacteria in these cultures self-aggregated into a conductive hydrogel complex together with biologically reduced GO (rGO). A novel GO-respiring bacterium designated Geobacter sp. strain R4 was isolated from this hydrogel complex. This organism exhibited stable electricity production at >1000 μA/cm(3) (at 200 mV vs Ag/AgCl) for more than 60 d via rGO while temporary electricity production using graphite felt. The better electricity production depends upon the characteristics of rGO such as a large surface area for biofilm growth, greater capacitance, and smaller internal resistance. This is the first report to demonstrate GO-dependent growth of exoelectrogenic bacteria while forming a conductive hydrogel complex with rGO. The simple put-and-wait process leading to the formation of hydrogel complexes of rGO and exoelectrogens will enable wider applications of GO to bioelectrochemical systems.
氧化石墨烯(GO)可被某些外源性电子产生菌还原,但它对细菌生长和代谢的影响是一个有争议的问题。本研究旨在确定 GO 是否作为末端电子受体,以允许外源性电子产生菌的特定生长和电力生产。用 GO 和醋酸盐作为唯一底物培养环境样品,可以特异性地富集具有优势的产电菌(总种群的 51-68%为 Geobacter 属)。有趣的是,这些培养物中的细菌会与生物还原的 GO(rGO)一起自我聚集形成导电水凝胶复合物。从该水凝胶复合物中分离到一种新型的 GO 呼吸菌,命名为 Geobacter sp. strain R4。该生物在 rGO 上通过>1000 μA/cm(3)(相对于 Ag/AgCl 为 200 mV)稳定地产生超过 60 d 的电流,而在使用石墨毡时则暂时产生电流。更好的电力生产取决于 rGO 的特性,如生物膜生长的大表面积、更大的电容和更小的内阻。这是第一个证明外源性电子产生菌在形成与 rGO 导电水凝胶复合物的同时依赖 GO 生长的报告。导致 rGO 和外源性电子产生菌形成水凝胶复合物的简单放置和等待过程将使 GO 更广泛地应用于生物电化学系统。