Persson Jenna, Steglich Babett, Smialowska Agata, Boyd Mette, Bornholdt Jette, Andersson Robin, Schurra Catherine, Arcangioli Benoit, Sandelin Albin, Nielsen Olaf, Ekwall Karl
Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
EMBO Rep. 2016 May;17(5):753-68. doi: 10.15252/embr.201541866. Epub 2016 Feb 22.
Retrotransposons, the ancestors of retroviruses, have the potential for gene disruption and genomic takeover if not kept in check. Paradoxically, although host cells repress these elements by multiple mechanisms, they are transcribed and are even activated under stress conditions. Here, we describe a new mechanism of retrotransposon regulation through transcription start site (TSS) selection by altered nucleosome occupancy. We show that Fun30 chromatin remodelers cooperate to maintain a high level of nucleosome occupancy at retrotransposon-flanking long terminal repeat (LTR) elements. This enforces the use of a downstream TSS and the production of a truncated RNA incapable of reverse transcription and retrotransposition. However, in stressed cells, nucleosome occupancy at LTR elements is reduced, and the TSS shifts to allow for productive transcription. We propose that controlled retrotransposon transcription from a nonproductive TSS allows for rapid stress-induced activation, while preventing uncontrolled transposon activity in the genome.
逆转录转座子是逆转录病毒的祖先,如果不加以控制,它们有可能破坏基因并接管基因组。矛盾的是,尽管宿主细胞通过多种机制抑制这些元件,但它们仍会被转录,甚至在应激条件下被激活。在这里,我们描述了一种通过改变核小体占有率来选择转录起始位点(TSS)从而调控逆转录转座子的新机制。我们发现,Fun30染色质重塑因子协同作用,在逆转录转座子侧翼的长末端重复序列(LTR)元件处维持高水平的核小体占有率。这促使下游TSS的使用,并产生无法进行逆转录和逆转座的截短RNA。然而,在应激细胞中,LTR元件处的核小体占有率降低,TSS发生转移以允许产生有功能的转录本。我们提出,从无功能TSS对逆转录转座子转录的控制,既能实现应激诱导的快速激活,又能防止基因组中转座子的不受控活动。