School of Advanced Materials, Peking University, Shenzhen Graduate School , Shenzhen 518055, People's Republic of China.
ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4587-4596. doi: 10.1021/acsami.6b13166. Epub 2017 Jan 30.
Non-noble metal catalysts with catalytic activity toward oxygen reduction reaction (ORR) comparable or even superior to that of Pt/C are extremely important for the wide application of metal-air batteries and fuel cells. Here, we develop a simple and controllable strategy to synthesize Fe-cluster embedded in FeC nanoparticles (designated as FeC(Fe)) encased in nitrogen-doped graphitic layers (NDGLs) with graphitic shells as a novel hybrid nanostructure as an effective ORR catalyst by directly pyrolyzing a mixture of Prussian blue (PB) and glucose. The pyrolysis temperature was found to be the key parameter for obtaining a stable FeC(Fe)@NDGL core-shell nanostructure with an optimized content of nitrogen. The optimized FeC(Fe)@NDGL catalyst showed high catalytic performance of ORR comparable to that of the Pt/C (20 wt %) catalyst and better stability than that of the Pt/C catalyst in alkaline electrolyte. According to the experimental results and first principle calculation, the high activity of the FeC(Fe)@NDGL catalyst can be ascribed to the synergistic effect of an adequate content of nitrogen doping in graphitic carbon shells and Fe-cluster pushing electrons to NDGL. A zinc-air battery utilizing the FeC(Fe)@NDGL catalyst demonstrated a maximum power density of 186 mW cm, which is slightly higher than that of a zinc-air battery utilizing the commercial Pt/C catalyst (167 mW cm), mostly because of the large surface area of the N-doped graphitic carbon shells. Theoretical calculation verified that O molecules can spontaneously adsorb on both pristine and nitrogen doped graphene surfaces and then quickly diffuse to the catalytically active nitrogen sites. Our catalyst can potentially become a promising replacement for Pt catalysts in metal-air batteries and fuel cells.
具有与 Pt/C 相当甚至更优的氧还原反应 (ORR) 催化活性的非贵金属催化剂对于金属空气电池和燃料电池的广泛应用至关重要。在这里,我们通过直接热解普鲁士蓝 (PB) 和葡萄糖的混合物,开发了一种简单可控的策略来合成嵌入在氮掺杂石墨层 (NDGL) 中的 FeC 纳米颗粒 (命名为 FeC(Fe)) 内的 Fe 团簇,形成具有石墨壳的新型杂化纳米结构作为有效的 ORR 催化剂。发现热解温度是获得具有优化氮含量的稳定 FeC(Fe)@NDGL 核壳纳米结构的关键参数。优化的 FeC(Fe)@NDGL 催化剂表现出与 Pt/C (20 wt %) 催化剂相当的 ORR 催化性能,并且在碱性电解质中的稳定性优于 Pt/C 催化剂。根据实验结果和第一性原理计算,FeC(Fe)@NDGL 催化剂的高活性可归因于石墨碳壳中适量氮掺杂和 Fe 团簇向 NDGL 推电子的协同效应。使用 FeC(Fe)@NDGL 催化剂的锌空气电池表现出 186 mW cm 的最大功率密度,略高于使用商业 Pt/C 催化剂的锌空气电池 (167 mW cm),这主要是因为 N 掺杂石墨碳壳的大表面积。理论计算验证了 O 分子可以自发吸附在原始和氮掺杂石墨烯表面上,然后迅速扩散到催化活性的氮位。我们的催化剂有望成为金属空气电池和燃料电池中替代 Pt 催化剂的有前途的催化剂。