Suppr超能文献

胺功能化二氧化硅上铁铜纳米颗粒的原子尺度工程:碳纳米管驱动的协同作用实现超高效析氢

Atomic-scale engineering of Fe-Cu nanoparticles on amine-functionalized silica: CNT-driven synergy for ultra-efficient hydrogen evolution.

作者信息

Khdary Nezar H, El-Ads Ekram H, Galal Ahmed, Fallatah Ahmad O, Alzahrain Sami D, Alotaibi Muteb F, Alotaibi Mohammed J

机构信息

King Abdulaziz City for Science and Technology Riyadh 11442 Kingdom of Saudi Arabia

Cairo University, Faculty of Science, Chemistry Department Giza 12613 Egypt.

出版信息

RSC Adv. 2025 Sep 12;15(40):33252-33263. doi: 10.1039/d5ra03709c. eCollection 2025 Sep 11.

Abstract

Emphasizing a breakthrough in material synergy and synthesis strategies, this work provides a new catalyst design for high-efficiency electrolytic water splitting. The novelty is in the development of a hierarchical Fe/Cu@silica-CNT composite, whereby exact anchoring of Fe/Cu ions is enabled by silica functionalization with -(3-(trimethoxysyl)propyl)ethylenediamine, consequently guaranteeing atomic-level metal distribution and preventing nanoparticle aggregation. A significant improvement over conventional deposition techniques resulted from subsequent chemical reduction, producing ultra-small, stable Fe/Cu nanoparticles (5 nm) directly grafted onto silica. The use of multi-walled carbon nanotubes (CNTs) generated a three-dimensional conductive network, which simultaneously optimized charge transfer and achieved nanoparticle dispersion. Extensive characterization (FE-SEM, EDX, XPS, and BET) confirmed that the high-density active sites at Fe/Cu-SiO interfaces, coupled with CNT-induced electron delocalization, validate the uniqueness of the architecture. Under acidic conditions, electrochemical testing revealed remarkable hydrogen evolution reaction (HER) performance with a record-low Tafel slope of 34 mV dec and an overpotential reduction of 120 mV against bare CNTs. Fe-Cu electronic interactions and CNT-mediated mass transport resulted in a 4.3-fold increase in exchange current density that the catalyst achieved relative to its monometallic counterparts. This work presents a transforming solution for scalable green hydrogen generation using a creative dual-engineering approach, molecular-scale metal anchoring, and a nano-architecture conductive support, thus solving major obstacles in catalyst durability and activity.

摘要

这项工作强调了材料协同作用和合成策略方面的突破,为高效电解水制氢提供了一种新的催化剂设计。其新颖之处在于开发了一种分级Fe/Cu@二氧化硅-碳纳米管复合材料,通过用-(3-(三甲氧基硅基)丙基)乙二胺对二氧化硅进行功能化,实现了Fe/Cu离子的精确锚定,从而保证了原子级的金属分布并防止纳米颗粒聚集。后续的化学还原对传统沉积技术有了显著改进,直接在二氧化硅上生成了超小、稳定的Fe/Cu纳米颗粒(5纳米)。多壁碳纳米管(CNT)的使用产生了三维导电网络,同时优化了电荷转移并实现了纳米颗粒的分散。广泛的表征(场发射扫描电子显微镜、能谱仪、X射线光电子能谱和比表面积分析)证实,Fe/Cu-二氧化硅界面处的高密度活性位点,加上碳纳米管诱导的电子离域,验证了该结构的独特性。在酸性条件下,电化学测试显示出显著的析氢反应(HER)性能,塔菲尔斜率低至34 mV dec,相对于裸碳纳米管过电位降低了120 mV。Fe-Cu电子相互作用和碳纳米管介导的传质导致催化剂的交换电流密度相对于其单金属对应物增加了4.3倍。这项工作采用创新的双工程方法、分子尺度的金属锚定和纳米结构导电载体,为可扩展的绿色制氢提出了一种变革性解决方案,从而解决了催化剂耐久性和活性方面的主要障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c96/12426754/a27f98533fef/d5ra03709c-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验