Farhat Maha R, Sultana Razvan, Iartchouk Oleg, Bozeman Sam, Galagan James, Sisk Peter, Stolte Christian, Nebenzahl-Guimaraes Hanna, Jacobson Karen, Sloutsky Alexander, Kaur Devinder, Posey James, Kreiswirth Barry N, Kurepina Natalia, Rigouts Leen, Streicher Elizabeth M, Victor Tommie C, Warren Robin M, van Soolingen Dick, Murray Megan
1 Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts.
2 Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts.
Am J Respir Crit Care Med. 2016 Sep 1;194(5):621-30. doi: 10.1164/rccm.201510-2091OC.
The development of molecular diagnostics that detect both the presence of Mycobacterium tuberculosis in clinical samples and drug resistance-conferring mutations promises to revolutionize patient care and interrupt transmission by ensuring early diagnosis. However, these tools require the identification of genetic determinants of resistance to the full range of antituberculosis drugs.
To determine the optimal molecular approach needed, we sought to create a comprehensive catalog of resistance mutations and assess their sensitivity and specificity in diagnosing drug resistance.
We developed and validated molecular inversion probes for DNA capture and deep sequencing of 28 drug-resistance loci in M. tuberculosis. We used the probes for targeted sequencing of a geographically diverse set of 1,397 clinical M. tuberculosis isolates with known drug resistance phenotypes. We identified a minimal set of mutations to predict resistance to first- and second-line antituberculosis drugs and validated our predictions in an independent dataset. We constructed and piloted a web-based database that provides public access to the sequence data and prediction tool.
The predicted resistance to rifampicin and isoniazid exceeded 90% sensitivity and specificity but was lower for other drugs. The number of mutations needed to diagnose resistance is large, and for the 13 drugs studied it was 238 across 18 genetic loci.
These data suggest that a comprehensive M. tuberculosis drug resistance diagnostic will need to allow for a high dimension of mutation detection. They also support the hypothesis that currently unknown genetic determinants, potentially discoverable by whole-genome sequencing, encode resistance to second-line tuberculosis drugs.
能够检测临床样本中结核分枝杆菌的存在以及赋予耐药性的突变的分子诊断技术的发展,有望通过确保早期诊断来彻底改变患者护理并阻断传播。然而,这些工具需要鉴定对所有抗结核药物的耐药性遗传决定因素。
为了确定所需的最佳分子方法,我们试图创建一个耐药性突变的综合目录,并评估它们在诊断耐药性方面的敏感性和特异性。
我们开发并验证了用于结核分枝杆菌中28个耐药位点的DNA捕获和深度测序的分子倒置探针。我们使用这些探针对1397株具有已知耐药表型的来自不同地理区域的临床结核分枝杆菌分离株进行靶向测序。我们确定了一组最小的突变来预测对一线和二线抗结核药物的耐药性,并在一个独立的数据集中验证了我们的预测。我们构建并试用了一个基于网络的数据库,该数据库提供对序列数据和预测工具的公共访问。
对利福平和平的耐药性预测的敏感性和特异性超过90%,但对其他药物的预测较低。诊断耐药性所需的突变数量很大,对于所研究的13种药物,在18个基因位点上共有238个突变。
这些数据表明,全面的结核分枝杆菌耐药性诊断需要能够进行高维度的突变检测。它们还支持这样一种假设,即目前未知的、可能通过全基因组测序发现的遗传决定因素编码对二线结核药物的耐药性。