Milchenko Mikhail, Snyder Abraham Z, LaMontagne Pamela, Shimony Joshua S, Benzinger Tammie L, Fouke Sarah Jost, Marcus Daniel S
Neuroinformatics Research Group, Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
Department of Neurological Surgery, Swedish Medical Center, Seattle, WA, USA.
Neuroinformatics. 2016 Jul;14(3):305-17. doi: 10.1007/s12021-016-9296-7.
Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis. Given this heterogeneity, conventional processing workflows developed for research purposes are not optimal for clinical data. In this work, we describe an approach called Heterogeneous Optimization Framework (HOF) for developing image analysis pipelines that can handle the high degree of clinical data non-uniformity. HOF provides a set of guidelines for configuration, algorithm development, deployment, interpretation of results and quality control for such pipelines. At each step, we illustrate the HOF approach using the implementation of an automated pipeline for Multimodal Glioma Analysis (MGA) as an example. The MGA pipeline computes tissue diffusion characteristics of diffusion tensor imaging (DTI) acquisitions, hemodynamic characteristics using a perfusion model of susceptibility contrast (DSC) MRI, and spatial cross-modal co-registration of available anatomical, physiological and derived patient images. Developing MGA within HOF enabled the processing of neuro-oncology MR imaging studies to be fully automated. MGA has been successfully used to analyze over 160 clinical tumor studies to date within several research projects. Introduction of the MGA pipeline improved image processing throughput and, most importantly, effectively produced co-registered datasets that were suitable for advanced analysis despite high heterogeneity in acquisition protocols.
神经影像学研究通常依赖于临床获取的磁共振成像(MRI)数据集,这些数据集可能来自多个机构。此类数据集的特点是模态高度异质性和序列参数的变异性。这种异质性使诸如空间配准和生理或功能图像分析等图像处理任务的自动化变得复杂。鉴于这种异质性,为研究目的开发的传统处理工作流程对于临床数据并非最优。在这项工作中,我们描述了一种称为异构优化框架(HOF)的方法,用于开发能够处理高度临床数据不均匀性的图像分析管道。HOF为此类管道的配置、算法开发、部署、结果解释和质量控制提供了一套指导方针。在每一步中,我们以多模态胶质瘤分析(MGA)自动化管道的实现为例来说明HOF方法。MGA管道计算扩散张量成像(DTI)采集的组织扩散特征、使用对比剂增强磁共振成像(DSC)的灌注模型计算血流动力学特征,以及对可用的解剖、生理和派生的患者图像进行空间跨模态配准。在HOF内开发MGA使得神经肿瘤学MR成像研究的处理能够完全自动化。迄今为止,MGA已成功用于分析多个研究项目中的160多项临床肿瘤研究。MGA管道的引入提高了图像处理通量,最重要的是,尽管采集协议存在高度异质性,但仍有效地生成了适合高级分析的配准数据集。