Suppr超能文献

整合亚细胞蛋白质组学分析能够准确预测人类致病基因。

Integrative subcellular proteomic analysis allows accurate prediction of human disease-causing genes.

作者信息

Zhao Li, Chen Yiyun, Bajaj Amol Onkar, Eblimit Aiden, Xu Mingchu, Soens Zachry T, Wang Feng, Ge Zhongqi, Jung Sung Yun, He Feng, Li Yumei, Wensel Theodore G, Qin Jun, Chen Rui

机构信息

Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA;

Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.

出版信息

Genome Res. 2016 May;26(5):660-9. doi: 10.1101/gr.198911.115. Epub 2016 Feb 24.

Abstract

Proteomic profiling on subcellular fractions provides invaluable information regarding both protein abundance and subcellular localization. When integrated with other data sets, it can greatly enhance our ability to predict gene function genome-wide. In this study, we performed a comprehensive proteomic analysis on the light-sensing compartment of photoreceptors called the outer segment (OS). By comparing with the protein profile obtained from the retina tissue depleted of OS, an enrichment score for each protein is calculated to quantify protein subcellular localization, and 84% accuracy is achieved compared with experimental data. By integrating the protein OS enrichment score, the protein abundance, and the retina transcriptome, the probability of a gene playing an essential function in photoreceptor cells is derived with high specificity and sensitivity. As a result, a list of genes that will likely result in human retinal disease when mutated was identified and validated by previous literature and/or animal model studies. Therefore, this new methodology demonstrates the synergy of combining subcellular fractionation proteomics with other omics data sets and is generally applicable to other tissues and diseases.

摘要

对亚细胞组分进行蛋白质组分析可提供有关蛋白质丰度和亚细胞定位的宝贵信息。当与其他数据集整合时,它可以极大地增强我们在全基因组范围内预测基因功能的能力。在本研究中,我们对光感受器的光感受区室——外段(OS)进行了全面的蛋白质组分析。通过与从去除OS的视网膜组织获得的蛋白质谱进行比较,计算每种蛋白质的富集分数以量化蛋白质亚细胞定位,与实验数据相比,准确率达到84%。通过整合蛋白质OS富集分数、蛋白质丰度和视网膜转录组,以高特异性和敏感性得出基因在光感受器细胞中发挥重要功能的概率。结果,确定了一份在突变时可能导致人类视网膜疾病的基因列表,并通过先前的文献和/或动物模型研究进行了验证。因此,这种新方法证明了亚细胞分级蛋白质组学与其他组学数据集相结合的协同作用,并且通常适用于其他组织和疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa4/4864458/760be2a1c041/660f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验