Suppr超能文献

通过1-取代环丁烯的开环聚合精确合成交替共聚物

Precision Synthesis of Alternating Copolymers via Ring-Opening Polymerization of 1-Substituted Cyclobutenes.

作者信息

Parker Kathlyn A, Sampson Nicole S

机构信息

Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.

出版信息

Acc Chem Res. 2016 Mar 15;49(3):408-17. doi: 10.1021/acs.accounts.5b00490. Epub 2016 Feb 25.

Abstract

Investigation of complex molecular systems depends on our ability to correlate physical measurements with molecular structure. Interpretation of studies that rely on synthetic polymers is generally limited by their heterogeneity; i.e., there is variation in the number and arrangement of the monomeric building blocks that have been incorporated. Superior physics and biology can be performed with materials and tools that exert precise control over the sequence and spacing of functional groups. An interest in functional ligands combined with a desire to control the orientation and stereochemistry of monomer incorporation led to the design of new substrates for ruthenium-catalyzed ring-opening metathesis polymerization (ROMP). We discovered that ROMP of cyclobutene-1-carboxamides provides uniform and translationally invariant polymers. In contrast, cyclobutene-1-carboxylate esters ring open upon treatment with ruthenium catalyst, but they are stable to homopolymerization. However, in the presence of cyclohexene monomers, they undergo alternating ROMP (AROMP or alt-ROMP) to give copolymers with a precisely controlled sequence. The alternating cyclobutene ester/cyclohexene pair provides access to functional group spacing larger than is possible with homopolymers. This can be desirable; for example, polymers with a regular 8-10 Å backbone spacing of cationic charge and with between four and eight cationic groups were the most effective antibacterial agents and had low cytotoxicity. Moreover, the AROMP chemistry allows alternation of two functional moieties: one associated with the cyclohexene and one attached to the cyclobutene. In the case of antibacterial copolymers, the alternating chemistry allowed variation of hydrophobicity via the cyclohexene while maintaining a constant cation spacing through the cyclobutene. In the case of copolymers that bear donor and acceptor groups, strict alternation of the groups increased intrachain charge transfer. Like cyclobutene-1-carboxylate esters, bicyclo[4.2.0]oct-7-ene-7-carboxylate esters ring open upon treatment with ruthenium catalyst and undergo ring opening cross-metathesis with cyclohexene to form alternating copolymers. The corresponding bicyclo[4.2.0]oct-7-ene-7-carboxyamides isomerize to the bicyclo[4.2.0]oct-1(8)-ene-8-carboxamides before they can ring open. However, the isomerized amides undergo ruthenium-catalyzed ring opening metathesis and rapidly AROMP with cyclohexene. Our alternating copolymer systems allow functionality to be placed along a polymer chain with larger than typical spacing. We have used both homopolymers and alternating copolymers for defining the functional group density required for targeting a cell surface and for the exploration of functional group positioning within a polymer chain. These polymer systems provide access to new materials with previously inaccessible types of nanoscale structures.

摘要

对复杂分子系统的研究依赖于我们将物理测量与分子结构相关联的能力。依赖合成聚合物的研究的解释通常受到其异质性的限制;也就是说,已掺入的单体结构单元的数量和排列存在变化。使用能够对官能团的序列和间距进行精确控制的材料和工具,可以实现更卓越的物理学和生物学研究。对功能性配体的兴趣以及对控制单体掺入的取向和立体化学的渴望,促使人们设计了用于钌催化的开环易位聚合(ROMP)的新底物。我们发现环丁烯-1-羧酰胺的ROMP能提供均匀且平移不变的聚合物。相比之下,环丁烯-1-羧酸酯在用钌催化剂处理时会开环,但它们对均聚反应稳定。然而,在环己烯单体存在下,它们会发生交替ROMP(AROMP或alt-ROMP)以生成具有精确控制序列的共聚物。交替的环丁烯酯/环己烯对能够实现比均聚物更大的官能团间距。这可能是理想的;例如,具有规则的8 - 10 Å阳离子电荷主链间距且带有4至8个阳离子基团的聚合物是最有效的抗菌剂且细胞毒性低。此外,AROMP化学方法允许两种官能团交替排列:一种与环己烯相关,另一种连接在环丁烯上。在抗菌共聚物的情况下,交替化学方法允许通过环己烯改变疏水性,同时通过环丁烯保持恒定的阳离子间距。在带有供体和受体基团的共聚物的情况下,基团的严格交替增加了链内电荷转移。与环丁烯-1-羧酸酯一样,双环[4.2.0]辛-7-烯-7-羧酸酯在用钌催化剂处理时会开环,并与环己烯发生开环交叉易位反应形成交替共聚物。相应的双环[4.2.0]辛-7-烯-7-羧酰胺在开环之前会异构化为双环[4.2.0]辛-1(8)-烯-8-羧酰胺。然而,异构化的酰胺会发生钌催化的开环易位反应,并与环己烯迅速进行AROMP。我们的交替共聚物系统允许官能团沿着聚合物链以大于典型间距的方式排列。我们已经使用均聚物和交替共聚物来确定靶向细胞表面所需的官能团密度,并探索聚合物链内官能团的定位。这些聚合物系统能够制备出具有以前无法获得的纳米级结构类型的新材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49f0/4794705/45de50859f19/ar-2015-00490m_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验